Synthesis of telechelic trans-1,4-polyisoprenes(TPI: trans-structure > 95%) was evaluated based on two different methods of oxidative cleavage(indirect cleavage: first epoxidation of TPI, then the selective c...Synthesis of telechelic trans-1,4-polyisoprenes(TPI: trans-structure > 95%) was evaluated based on two different methods of oxidative cleavage(indirect cleavage: first epoxidation of TPI, then the selective cleavage of epoxidized units in epoxidized trans-1,4-polyisoprene(ETPI) and direct cleavage of isoprene units in TPI). The influence of solvents and the ratio of oxidative agents was investigated by 1H-NMR and 13C-NMR. A series of well-defined telechelic TPI with double terminated functional groups and less side reaction(molecular weight distribution range: 1.96?2.26) were synthesized by indirect cleavage in chloroform. Telechelic TPI showed similar crystallization behavior with TPI and interesting cold crystallization behavior characterized by DSC.展开更多
Although bioinspired sacrificial bonds have been demonstrated to be efficient in improving the mechanical properties of polymer materials, the effect of binding energy of a specific dynamic bond on the ultimate mechan...Although bioinspired sacrificial bonds have been demonstrated to be efficient in improving the mechanical properties of polymer materials, the effect of binding energy of a specific dynamic bond on the ultimate mechanical performance of a polymer network with dual-crosslink remains unclear. In this contribution, diamine and sulfur curing package are introduced simultaneously into a sulfonated cis-1,4-polyisoprene to create dually-crosslinked cis-1,4-polyisoprene network with sulfonate-aminium ionic bonds as the sacrificial bonds. Three diamines (primary, secondary and tertiary) with the same spacer between the two nitrogen atoms are used to create the ionic bonds with different binding energies. Although the binding energy of ionic bond does not affect the glass transition temperature of cis-1,4-polyisoprene (IR), it exerts definite influences on strain-induced crystallization and mechanical performance. The capabilities of diamine in dissipating energy, promoting strain-induced crystallization and enhancing the mechanical performance are in the same order of secondary diamine 〉 primary diamine 〉 tertiary diamine. The variations in mechanical performances are correlated to the binding energy of the ionic bond, which is determined by pKa values.展开更多
trans 1,4 Polybutadiene(PTBD) was synthesized by rare earth catalyst system. The effect of electron radiation on phase transition from monoclinic phase to hexagonal phase was observed by TEM. Electron diffraction patt...trans 1,4 Polybutadiene(PTBD) was synthesized by rare earth catalyst system. The effect of electron radiation on phase transition from monoclinic phase to hexagonal phase was observed by TEM. Electron diffraction patterns of monoclinic phase, hexagonal phase and two coexistent phases were recorded. The mechanism of phase transition was also discussed in this paper.展开更多
基金financially supported by the Natural Science Foundation of Shandong Province(No.ZR2014BQ022)the National Natural Science Foundation of China(No.51273100)a Project of Shandong Province Higher Educational Science and Technology Program(No.J14LA12)
文摘Synthesis of telechelic trans-1,4-polyisoprenes(TPI: trans-structure > 95%) was evaluated based on two different methods of oxidative cleavage(indirect cleavage: first epoxidation of TPI, then the selective cleavage of epoxidized units in epoxidized trans-1,4-polyisoprene(ETPI) and direct cleavage of isoprene units in TPI). The influence of solvents and the ratio of oxidative agents was investigated by 1H-NMR and 13C-NMR. A series of well-defined telechelic TPI with double terminated functional groups and less side reaction(molecular weight distribution range: 1.96?2.26) were synthesized by indirect cleavage in chloroform. Telechelic TPI showed similar crystallization behavior with TPI and interesting cold crystallization behavior characterized by DSC.
基金financially supported by the National Basic Research Program of China(No.2015CB654700(2015CB654703))the National Natural Science Foundation of China(Nos.51673065,51703064,51473050 and 51333003)Fundamental Research Funds for the Central Universities(No.2017PY006)
文摘Although bioinspired sacrificial bonds have been demonstrated to be efficient in improving the mechanical properties of polymer materials, the effect of binding energy of a specific dynamic bond on the ultimate mechanical performance of a polymer network with dual-crosslink remains unclear. In this contribution, diamine and sulfur curing package are introduced simultaneously into a sulfonated cis-1,4-polyisoprene to create dually-crosslinked cis-1,4-polyisoprene network with sulfonate-aminium ionic bonds as the sacrificial bonds. Three diamines (primary, secondary and tertiary) with the same spacer between the two nitrogen atoms are used to create the ionic bonds with different binding energies. Although the binding energy of ionic bond does not affect the glass transition temperature of cis-1,4-polyisoprene (IR), it exerts definite influences on strain-induced crystallization and mechanical performance. The capabilities of diamine in dissipating energy, promoting strain-induced crystallization and enhancing the mechanical performance are in the same order of secondary diamine 〉 primary diamine 〉 tertiary diamine. The variations in mechanical performances are correlated to the binding energy of the ionic bond, which is determined by pKa values.
文摘trans 1,4 Polybutadiene(PTBD) was synthesized by rare earth catalyst system. The effect of electron radiation on phase transition from monoclinic phase to hexagonal phase was observed by TEM. Electron diffraction patterns of monoclinic phase, hexagonal phase and two coexistent phases were recorded. The mechanism of phase transition was also discussed in this paper.