The combination of 1,3-dichloropropene+dimethyl disulfide (1,3-D+DMDS), which forms a pre-plant soil fumigant, can provide a substitute for the environmentally unfriendly methyl bromide (MB). Three greenhouse tr...The combination of 1,3-dichloropropene+dimethyl disulfide (1,3-D+DMDS), which forms a pre-plant soil fumigant, can provide a substitute for the environmentally unfriendly methyl bromide (MB). Three greenhouse trials were performed to evaluate the root-knot nematode and soilborne fungi control efficacy in the suburbs of Beijing in China in 2010-2014. Randomized blocks with three replicates were designed in each trial. The combination of 1,3-D+DMDS (10+30 g m-2) significantly controlled Meloidogyne incognita, effectively suppressed the infestation of Fusarium oxysporum and Phytophthora spp., and successfully provided high commercial fruit yields (equal to MB but higher than 1,3-D or DMDS). The fumigant soil treatments were significantly better than the untreated controls. These results indicate that 1,3-D+DMDS soil treatments can be applied by soil injection or chemigation as a promising MB alternative against soilborne pests in cucumber in China.展开更多
Combined use of chloropicrin (Pic) and 1,3-dicloropropene (1,3-D) is as effective as methyl bromide (MB) at controlling soilborne diseases in many trials and commercial uses. However, Pic and 1,3-D are both high...Combined use of chloropicrin (Pic) and 1,3-dicloropropene (1,3-D) is as effective as methyl bromide (MB) at controlling soilborne diseases in many trials and commercial uses. However, Pic and 1,3-D are both highly volatile and may pose strong exposure risks to humans and the environment. A gelatin capsule formulation containing Pic and 1,3-D has been developed to reduce exposure risks to workers and bystanders and improved application safety. We conducted two experiments in tomato and cucumber greenhouses located in Beijing and Qingdao, China, to study the efficacy of Pic plus 1,3-D gelatin capsules applied at different dosages and soil depths. Results indicated that both injection and gelatin capsules of Pic plus 1,3-D provided good control of soil nematodes and reduced disease index of Fusarium wilt and root-knot nematode. Plant yield of tomato and cucumber treated with gelatin capsules was similar to MB treatment. Based on our results, gelatin capsules applied at a soil depth of 15 cm provided better control of soilborne diseases and led to higher fruit yield compared to an application depth of 5 cm. In conclusion, a gelatin capsule of Pic plus 1,3-D is a promising and novel formulation, which not only shows good efficacy in controlling soilborne diseases, but also reduces potential exposure risks of fumigants.展开更多
Fumigation is a widely applied approach to mitigate the soil-borne diseases.However,the potential effects of currently applied fumigants on ammonification remain unclear.An 84-day incubation experiment was conducted b...Fumigation is a widely applied approach to mitigate the soil-borne diseases.However,the potential effects of currently applied fumigants on ammonification remain unclear.An 84-day incubation experiment was conducted based on non-fumigated soil(CK)and fumigated soil using three common fumigants,i.e.,chloropicrin(CP),1,3-dichloropropene(1,3-D),and metam sodium(MS).The results showed that,the three fumigants all decreased the microbial C,and the largest reduction(84.7%)occurred with the application of CP.After fumigation,the microbial diversity in the CP treatment rapidly recovered,but that in the 1,3-D treatment decreased and did not recover by the end of the experiment.The application of MS showed no impact on the microbial diversity during the assay,indicating that significantly different microbial diversity can be achieved by choosing different fumigants.Futhermore,the three fumigants showed divergent effects on the enzymes involved in ammonification.The analysis showed that the enzyme variation with CP application was mainly associated with the changed microbial C and N(P<0.05),and not with the microbial community,which was different from the observed effects of 1,3-D or MS application.In addition,the soil quality index showed that CP was still significantly harmful at the end of incubation compared with the good resilience of MS,indicating that CP may not be a suitable fumigant.展开更多
基金supported by Beijing Team-Innovation, Modern Agricultural and Industrial Technology Innovation System of China (2010B064)the Program on Substituted Technology for Methyl Bromide in China (Special Finance of Chinese Ministry of Agriculture, 2110402) over the years
文摘The combination of 1,3-dichloropropene+dimethyl disulfide (1,3-D+DMDS), which forms a pre-plant soil fumigant, can provide a substitute for the environmentally unfriendly methyl bromide (MB). Three greenhouse trials were performed to evaluate the root-knot nematode and soilborne fungi control efficacy in the suburbs of Beijing in China in 2010-2014. Randomized blocks with three replicates were designed in each trial. The combination of 1,3-D+DMDS (10+30 g m-2) significantly controlled Meloidogyne incognita, effectively suppressed the infestation of Fusarium oxysporum and Phytophthora spp., and successfully provided high commercial fruit yields (equal to MB but higher than 1,3-D or DMDS). The fumigant soil treatments were significantly better than the untreated controls. These results indicate that 1,3-D+DMDS soil treatments can be applied by soil injection or chemigation as a promising MB alternative against soilborne pests in cucumber in China.
基金the financial support from the projects of Dow Agro Sciences, Ministry of Agriculture of China (2110402)the Beijing Agriculture Innovation Consortium (BAIC01-2017) over the years
文摘Combined use of chloropicrin (Pic) and 1,3-dicloropropene (1,3-D) is as effective as methyl bromide (MB) at controlling soilborne diseases in many trials and commercial uses. However, Pic and 1,3-D are both highly volatile and may pose strong exposure risks to humans and the environment. A gelatin capsule formulation containing Pic and 1,3-D has been developed to reduce exposure risks to workers and bystanders and improved application safety. We conducted two experiments in tomato and cucumber greenhouses located in Beijing and Qingdao, China, to study the efficacy of Pic plus 1,3-D gelatin capsules applied at different dosages and soil depths. Results indicated that both injection and gelatin capsules of Pic plus 1,3-D provided good control of soil nematodes and reduced disease index of Fusarium wilt and root-knot nematode. Plant yield of tomato and cucumber treated with gelatin capsules was similar to MB treatment. Based on our results, gelatin capsules applied at a soil depth of 15 cm provided better control of soilborne diseases and led to higher fruit yield compared to an application depth of 5 cm. In conclusion, a gelatin capsule of Pic plus 1,3-D is a promising and novel formulation, which not only shows good efficacy in controlling soilborne diseases, but also reduces potential exposure risks of fumigants.
基金Supported by the National Key Research and Development Program of China(2018YFD0300505)the National Key Technologies Project of China in Urban Agriculture during the 12th Five-Year Plan(2014BAD14B03).
文摘Fumigation is a widely applied approach to mitigate the soil-borne diseases.However,the potential effects of currently applied fumigants on ammonification remain unclear.An 84-day incubation experiment was conducted based on non-fumigated soil(CK)and fumigated soil using three common fumigants,i.e.,chloropicrin(CP),1,3-dichloropropene(1,3-D),and metam sodium(MS).The results showed that,the three fumigants all decreased the microbial C,and the largest reduction(84.7%)occurred with the application of CP.After fumigation,the microbial diversity in the CP treatment rapidly recovered,but that in the 1,3-D treatment decreased and did not recover by the end of the experiment.The application of MS showed no impact on the microbial diversity during the assay,indicating that significantly different microbial diversity can be achieved by choosing different fumigants.Futhermore,the three fumigants showed divergent effects on the enzymes involved in ammonification.The analysis showed that the enzyme variation with CP application was mainly associated with the changed microbial C and N(P<0.05),and not with the microbial community,which was different from the observed effects of 1,3-D or MS application.In addition,the soil quality index showed that CP was still significantly harmful at the end of incubation compared with the good resilience of MS,indicating that CP may not be a suitable fumigant.