Objective: In women with pelvic organ prolapse (POP), decreased expression of transforming growth factor-beta 1 (TGF-β1) has been shown in POP tissues. However, no studies have evaluated plasma TGF-β1 levels in pati...Objective: In women with pelvic organ prolapse (POP), decreased expression of transforming growth factor-beta 1 (TGF-β1) has been shown in POP tissues. However, no studies have evaluated plasma TGF-β1 levels in patients with POP, so it is unknown whether they are also changed or not. Therefore, we compared plasma TGF-β1 levels in women with and without POP. Methods: Participants were 49 women with POP and 23 healthy control women. All participants were postmenopausal. We measured plasma TGF-β1 and compared data between patients with POP and controls, and between patients with uterine prolapse (UP, n = 19) and those with a cystocele (CC, n = 30). In addition, in patients, we assessed the POP quantification system (POP-Q) stage. Results: Plasma TGF-β1 levels were significantly lower in patients than in healthy controls. POP-Q stage was not significantly different between the UP and CC subgroups, but POP-Q stage IV was diagnosed in 63% of patients with UP and 7% of those with CC. Plasma TGF-β1 levels were significantly lower in the CC subgroup than in the UP subgroup. Conclusion: Plasma TGF-β1 is decreased in POP. It remains unclear whether the lower levels indicate a reduction in systemic TGF-β1 activity, but they can be assumed to reflect reduced TGF-β1 expression in POP tissues.展开更多
BACKGROUND: Pancreatic stellate cells (PSCs) play a major role in promoting pancreatic fibrosis. Transforming growth factor beta 1 (TGF-beta 1) is a critical mediator of this process. This study aimed to determine the...BACKGROUND: Pancreatic stellate cells (PSCs) play a major role in promoting pancreatic fibrosis. Transforming growth factor beta 1 (TGF-beta 1) is a critical mediator of this process. This study aimed to determine the expression of the Smad3 and Smad7 genes in the process of PSC activation, and explore the mechanisms of chronic pancreatitis. METHODS: The expressions of Smad3 and Smad7 in PSCs before and after TGF-beta 1 treatment were detected by reverse transcription-polymerase chain reaction and Western blotting analysis. Smad3 expression was detected in PSCs after treatment with 5 ng/ml of TGF-beta 1 for 24 hours. RESULTS: Smad7 expression was decreased in TGF-beta 1 -activated PSCs (P<0.05) in a dose-dependent manner. When TGF-beta 1 concentration reached 10 ng/ml, the expression of p-Smad3, Smad3, and Smad7 was inhibited (P<0.05). CONCLUSIONS: TGF-beta 1 promotes the expression of Smad3 and inhibits the expression of Smad7 during the activation of PSCs. In contrast, high-dose TGF-beta 1 downregulates the expression of Smad3 in completely activated PSCs.展开更多
AIM: To investigate the interfering effect of Y-27632, a ROCK-I selective inhibitor, on the signal transduction pathway of transforming growth factor-beta 1 (TGF-beta 1) in ocular Tenon capsule fibroblasts (OTFS) in v...AIM: To investigate the interfering effect of Y-27632, a ROCK-I selective inhibitor, on the signal transduction pathway of transforming growth factor-beta 1 (TGF-beta 1) in ocular Tenon capsule fibroblasts (OTFS) in vitro. METHODS: After OTFS from passages 4 to 6 47 vitro were induced by TGF-beta 1 and then treated by Y-27632, the changes of the OTFS cell cycles were analyzed via flow cytometry, and the proteins expression of the alpha -smooth muscular actin (alpha -SMA), connective tissue growth factor (CTGF), collagen I were calculated by Western blot. After OTFS treated by the different concentrations of Y-27632, the expression levels of the alpha -SMA, CTGF and collagen I mRNA were assayed by RT-PCR. RESULTS: Y-27632 had no markedly effect on the OTFS cell cycles. After treated by TGF-beta 1, OTFS in G1 period significantly increased. The cell cycles distribution by both TGF-beta 1 and Y-27632 had no remarkable difference from that in control group. Y-27632 significantly inhibited the proteins expressions of both alpha -SMA and CTGF, while to some extent inhibited that of collagen I. TGF-beta 1 significantly promoted the proteins expressions of alpha -SMA, CTGF and collagen I. After OTFS treated by both TGF-beta 1 and Y-27632, of alpha -SMA, the protein expression was similar with that in control group (P=0.066>0.05), but the protein expression of CTGF or collagen I, respectively, was significantly different from that in control group (P=0.000<0.01). The differences of expressions of the alpha -SMA, CTGF and collagen I mRNA in 30, 150, 750 mu mol/L Y-27632 group were statistically significant, compared with those in control group, respectively (alpha -SMA, P=0.002, 0.000, 0.000; CTGF, P=0.014, 0.002, 0.001; collagen I,P=0.003, 0.002, 0.000). CONCLUSION: Blocking the Rho/ROCK signaling pathway by using of Y-27632 could inhibit the cellular proliferation and the expression of both CTGF and alpha -SMA whatever OTFS induced by TGF-beta 1 or not. Y-27632 suppressed the expression of collagen I mRNA without induction.展开更多
BACKGROUND: Previous studies have shown that transforming growth factor-beta 1 (TGF-beta 1) is the most potent means of stimulating liver fibrogenesis by myofibroblast-like cells derived from hepatic stellate cells. T...BACKGROUND: Previous studies have shown that transforming growth factor-beta 1 (TGF-beta 1) is the most potent means of stimulating liver fibrogenesis by myofibroblast-like cells derived from hepatic stellate cells. Thus, TGF-beta 1 could be a target for treating hepatic fibrosis. This study aimed to investigate the inhibitory effects of specific TGF-beta 1 small interference RNA (siRNA) on immune hepatic fibrosis induced by Concanavalin A (Con A) in mice. METHODS: Three short hairpin RNAs targeting different positions of TGF-beta 1 were designed and cloned to the plasmid pGenesil-1 to obtain three recombinant expression vectors (pGenesil-TGF-beta 1-ml, pGenesil-TGF-beta 1-m2 and pGenesil-TGF-beta 1-m3). Thirty male Kunming mice were randomly divided into 6 groups: normal, model, control, and three treatment groups. The immune hepatic fibrosis models were constructed by injecting Con A via the tail vein at 8 mg/kg per week for 6 weeks. At weeks 2, 4 and 6, pGenesil-TGF-beta 1-ml, pGenesil-TGF-beta 1-m2 or pGenesi1-TGF-beta 1-m3 was injected by a hydrodynamics-based transfection method via the tail vein at 0.8 ml/10 g within 24 hours after injection of Con A in each of the three treatment groups. The mice in the control group were injected with control plasmid pGenesil-HK at the same dose. All mice were sacrificed at week 7. The levels of hydroxyproline in liver tissue were determined by biochemistry. Liver histopathology was assessed by Van Gieson staining. The expression levels and localization of TGF-beta 1, Smad3, and Smad7 in liver tissue were detected by immunohistochemistry. The expression of TGF-beta 1, Smad3, Smad7 and alpha-smooth muscle actin (alpha-SMA) mRNAs in the liver were assessed by semi-quantitative RT-PCR. RESULTS: The levels of hydroxyproline in the liver tissue of the treatment groups were lower than those of the model group (P<0.01). Histopathologic assay showed that liver fibrogenesis was clearly improved in the treatment groups compared with the model group. The expression levels of TGF-beta 1 and Smad3 of liver tissue were also markedly lower in the treatment groups than in the model group (P<0.01), while the levels of Smad7 were higher in the treatment groups than in the model group (P<0.01). RT-PCR further showed that the expression of TGF-beta 1, Smad3 and alpha-SMA mRNA was significantly inhibited in the treatment groups compared with the model group, while the levels of Smad7 were increased. There was no difference in the above parameters among the three treatment groups or between the control and model groups (P>0.05), but the inhibitory effect of pGenesil-TGF-beta 1-ml was the highest among the treatment groups. CONCLUSIONS: Specific siRNA targeting of TGF-beta 1 markedly inhibited the fibrogenesis of immune hepatic fibrosis induced by Con A in mice. The anti-fibrosis mechanisms of siRNAs may be associated with the down-regulation of TGF-beta 1, Smad3 and alpha-SMA expression and up-regulation of Smad7 expression in liver tissue, which resulted in suppressing the activation of hepatic stellate cells. (Hepatobiliary Pancreat Dis Int 2009; 8: 300-308)展开更多
The expression of the anti-apoptotic molecules Bcl-2 and transforming growth factor-beta 1 is known to confer protective effects on the cerebral ischemia-reperfusion injury.The current study investigated the expressio...The expression of the anti-apoptotic molecules Bcl-2 and transforming growth factor-beta 1 is known to confer protective effects on the cerebral ischemia-reperfusion injury.The current study investigated the expression levels of Bcl-2 and transforming growth factor-beta 1 in response to multiple pre-ischemia electro-acupuncture at acupoints Zusanli(ST36)and Fengchi(GB20) stimulation.Rats were divided into five groups:uninjured,control,non-acupoint,GB20 and ST36. Rats in the non-acupoint,GB20 and ST36 groups received 30 minutes(3 times or 18 times)of electro-acupuncture stimulation before experimental cerebral ischemia was induced.Bcl-2 and transforming growth factor-beta 1 were found to be significantly increased in the ST36 groups with either 3 or 18 electro-acupuncture treatments(P〈0.05).The production was higher with 18 electro-acupuncture treatments in the ST36 groups(P〈0.05).In the GB20 groups,significant increase was only observed in transforming growth factor-beta 1 with 18 electro-acupuncture treatments(P〈0.05).No significant elevation of the level of transforming growth factor-beta 1 was observed in the non-acupoint groups.However,the production of Bcl-2 increased with 18 treatments in the non-acupoint groups(P〈0.05).The data suggest that multiple pre-ischemia electro-acupuncture at ST36 was effective in conferring neuroprotective effect on the brain by means of upregulation of Bcl-2 and transforming growth factor-beta 1 and the effect was increase with the number of treatment.展开更多
We reported in this manuscript that TGF-beta1 induces apoptosis in AML12 murine hepatocytes, which is associated with the activation of p38 MAPK signaling pathway. SB202190, a specific inhibitor of p38 MAPK, strongly ...We reported in this manuscript that TGF-beta1 induces apoptosis in AML12 murine hepatocytes, which is associated with the activation of p38 MAPK signaling pathway. SB202190, a specific inhibitor of p38 MAPK, strongly inhibited the TGF-beta1-induced apoptosis and PAI-1 promoter activity. Treatment of cells with TGF-beta1 activates p38. Furthermore, over-expression of dominant negative mutant p38 also reduced the TGF-beta1-induced apoptosis. The data indicate that the activation of p38 is involved in TGF-beta1-mediated gene expression and apoptosis.展开更多
Aim In diabetic patients, metformin appears to provide cardiovascular protection that cannot be attribu- ted only to its antihyperglycemic effects. Metformin is also known as the AMP-activated protein kinase (AMPK) ...Aim In diabetic patients, metformin appears to provide cardiovascular protection that cannot be attribu- ted only to its antihyperglycemic effects. Metformin is also known as the AMP-activated protein kinase (AMPK) ac- tivator. Our previous study suggested that metformin inhibits transforming growth factor-β1 (TGF-β1) production in a mouse heart failure model of pressure overload. TGF-β1 is a key factor in cardiac fibrosis and is usually induced by Angiotensin Ⅱ (Ang Ⅱ ) in the pressure overload mouse models. This study investigated the effect of metformin on cardiac fibrosis and TGF-β production induced by AngII and the underlying mechanisms. Methods C57/BL6 wild-type and AMPKα2 knockout mice were used. AngII (3 mg · kg-1 · d-1) was infused subcutaneously into mice for 7 days. Adult mouse cardiac fibroblasts were isolated and treated with AngII ( 1 μmol · L-1) and/or met- formin (1 mmol · L-l). Results In C57/BL6 mice, metformin inhibits AngII-induced cardiac fibrosis. In cardi-ac fibroblasts, metformin inhibits TGF-β1 expression and production induced by AngII. AMPK inhibitor, com- pound C, reversed the effects of metformin. In vivo, AMPKα2 deficiency further increases AngII-induced TGF-β1 production. In cardiac fibroblasts, metformin inhibited AngII induced hepatocyte nuclear factor4 (HNF4ot protein level increase and HNF4α binding with TGF-β1 promoter using chromatin immunoprecipitation assay. In vivo, AMPKα2 deficiency further increased AngII-induced HNF4α protein level. Using HNF4α adenovirus, overexpress- ing HNF4α led to a 1.5-fold increase in TGF-β1 mRNA expression. HNF4a siRNA blocked AngII induced TGF- β1 production. Luciferase reporter with deleted HNF4a binding sites showed decreased TGFbl transcriptional activ- ity induced by AngII. In AMPK or2-/- heart, the inhibition of metformin on HNF4a protein was attenuated. Con- clusion Metformin inhibits AngII induced cardiac fibrosis and TGF-β1 production through AMPK activation. The underlying mechanism is that AMPK activation inhibits AngII induced HNF4α and then decreases TGF-β1 expres- sion.展开更多
OBJECTIVE:To examine the influence of SaponinⅠfrom Shuitianqi(Rhizoma Schizocapasae Plantagineae)(SSPHⅠ)on hepatocellular carcinoma(HCC)metastasis,and to elucidate the underlying mechanism.METHODS:The intrahepatic m...OBJECTIVE:To examine the influence of SaponinⅠfrom Shuitianqi(Rhizoma Schizocapasae Plantagineae)(SSPHⅠ)on hepatocellular carcinoma(HCC)metastasis,and to elucidate the underlying mechanism.METHODS:The intrahepatic metastasis Bagg's Albino/c(BALB/c)mouse model was established with human hepatocellular carcinomas(HepG2)cells,then treated with normal saline(once per day),cisplatin(2 mg/kg,once every 2 d),and SSPHⅠ(25,50,and 75 mg/kg,once per day).Then,we assessed alterations in the hepatic pathology and target protein expressions in the intrahepatic metastasis BALB/c mouse model using a series of molecular biology techniques.RESULTS:Based on our analysis,SSPHⅠsignificantly alleviated hepatocyte necrosis and tumor cells infiltration.Moreover,SSPHⅠsuppressed extracellular matrix(ECM)degradation and angiogenesis via a decrease in matrix etalloproteinase-2(MMP-2),MMP-9,CD31,CD34,and vascular endothelial growth factor(VEGF)levels.Furthermore,SSPHⅠrepressed invasion and metastasis by suppressing the transforming growth factor-β1(TGF-β1)/Smad7 axis and epithelial-mesenchymal transition(EMT),as evidenced by the scarce TGF-β1,Ncadherin,and Vimentin expressions,and elevated Smad7 and E-cadherin expressions.CONCLUSION:The SSPHⅠ-mediated negative regulation of the TGF-β1/Smad7 axis and EMT are critical for the inhibition of HCC invasion and metastasis.展开更多
Long-term treatment with an agonist of peroxisome proliferator-activated receptor (PPAR)-γ is associated with bone fractures in the clinical practice. However, the mechanisms underlying the frac- tures are not full...Long-term treatment with an agonist of peroxisome proliferator-activated receptor (PPAR)-γ is associated with bone fractures in the clinical practice. However, the mechanisms underlying the frac- tures are not fully understood. This study was aimed to examine the effect of rosiglitazone (an agonist of PPAR-T) of different doses on the proliferation, differentiation, and transforming growth factor beta 1 (TGF-131)-induced expression of connective tissue growth factor (CTGF) in primary rat osteoblasts in vitro. Osteoblasts were isolated from newly born SD rats and treated with different doses of rosiglita- zone (0-20 gmol/L). The proliferation and differentiation of osteoblasts were measured by MTT assay and NPP assay, respectively. The expression of CTGF was determined by RT-PCR and Western blotting. The results showed that most isolated osteoblasts displayed strong alkaline phosphatase (ALP) activity and treatment with different doses of rosiglitazone did not affect their proliferation, but significantly in- hibited the differentiation of osteoblasts in a dose-dependent manner. Moreover, treatment with different doses of rosiglitazone significantly reduced the TGF-131-induced CTGF mRNA transcription and protein expression in a dose-dependent manner in rat osteoblasts. It was concluded that the activation of PPAR-y may inhibit the differentiation of osteoblasts by reducing the TGF-131-induced CTGF expres- sion in vitro.展开更多
AIM:To investigate the role of genetic polymorphisms in the progression of hepatic fibrosis in hereditary haemochromatosis.METHODS:A cohort of 245 well-characterised C282Y homozygous patients with haemochromatosis was...AIM:To investigate the role of genetic polymorphisms in the progression of hepatic fibrosis in hereditary haemochromatosis.METHODS:A cohort of 245 well-characterised C282Y homozygous patients with haemochromatosis was studied,with all subjects having liver biopsy data and DNA available for testing.This study assessed the association of eight single nucleotide polymorphisms(SNPs)in a total of six genes including toll-like receptor 4(TLR4),transforming growth factor-beta(TGF-β),oxoguanine DNA glycosylase,monocyte chemoattractant protein 1,chemokine C-C motif receptor 2 and interleukin-10 with liver disease severity.Genotyping was performed using high resolution melt analysis and sequencing.The results were analysed in relation to the stage of hepatic fibrosis in multivariate analysis incorporating other cofactors including alcohol consumption and hepatic iron concentration.RESULTS:There were significant associations between the cofactors of male gender(P=0.0001),increasing age(P=0.006),alcohol consumption(P=0.0001),steatosis(P=0.03),hepatic iron concentration(P<0.0001)and the presence of hepatic fibrosis.Of the candidate gene polymorphisms studied,none showed a significant association with hepatic fibrosis in univariate or multivariate analysis incorporating cofactors.We also specifically studied patients with hepatic iron loading above threshold levels for cirrhosis and compared the genetic polymorphisms between those with no fibrosis vs cirrhosis however there was no significant effect from any of the candidate genes studied.Importantly,in this large,well characterised cohort of patients there was no association between SNPs for TGF-βor TLR4and the presence of fibrosis,cirrhosis or increasing fibrosis stage in multivariate analysis.CONCLUSION:In our large,well characterised group of haemochromatosis subjects we did not demonstrate any relationship between candidate gene polymorphisms and hepatic fibrosis or cirrhosis.展开更多
文摘Objective: In women with pelvic organ prolapse (POP), decreased expression of transforming growth factor-beta 1 (TGF-β1) has been shown in POP tissues. However, no studies have evaluated plasma TGF-β1 levels in patients with POP, so it is unknown whether they are also changed or not. Therefore, we compared plasma TGF-β1 levels in women with and without POP. Methods: Participants were 49 women with POP and 23 healthy control women. All participants were postmenopausal. We measured plasma TGF-β1 and compared data between patients with POP and controls, and between patients with uterine prolapse (UP, n = 19) and those with a cystocele (CC, n = 30). In addition, in patients, we assessed the POP quantification system (POP-Q) stage. Results: Plasma TGF-β1 levels were significantly lower in patients than in healthy controls. POP-Q stage was not significantly different between the UP and CC subgroups, but POP-Q stage IV was diagnosed in 63% of patients with UP and 7% of those with CC. Plasma TGF-β1 levels were significantly lower in the CC subgroup than in the UP subgroup. Conclusion: Plasma TGF-β1 is decreased in POP. It remains unclear whether the lower levels indicate a reduction in systemic TGF-β1 activity, but they can be assumed to reflect reduced TGF-β1 expression in POP tissues.
基金supported by grants from the Natural Science Foundation of Jiangsu Province,China (No. BK2006241)the Foundation for Talents in Six Fields of Jiangsu Province (No. 07-B-038)
文摘BACKGROUND: Pancreatic stellate cells (PSCs) play a major role in promoting pancreatic fibrosis. Transforming growth factor beta 1 (TGF-beta 1) is a critical mediator of this process. This study aimed to determine the expression of the Smad3 and Smad7 genes in the process of PSC activation, and explore the mechanisms of chronic pancreatitis. METHODS: The expressions of Smad3 and Smad7 in PSCs before and after TGF-beta 1 treatment were detected by reverse transcription-polymerase chain reaction and Western blotting analysis. Smad3 expression was detected in PSCs after treatment with 5 ng/ml of TGF-beta 1 for 24 hours. RESULTS: Smad7 expression was decreased in TGF-beta 1 -activated PSCs (P<0.05) in a dose-dependent manner. When TGF-beta 1 concentration reached 10 ng/ml, the expression of p-Smad3, Smad3, and Smad7 was inhibited (P<0.05). CONCLUSIONS: TGF-beta 1 promotes the expression of Smad3 and inhibits the expression of Smad7 during the activation of PSCs. In contrast, high-dose TGF-beta 1 downregulates the expression of Smad3 in completely activated PSCs.
基金Shaanxi Province Science and Technology Gongguan Program, China (No.2011-K14-02-03)
文摘AIM: To investigate the interfering effect of Y-27632, a ROCK-I selective inhibitor, on the signal transduction pathway of transforming growth factor-beta 1 (TGF-beta 1) in ocular Tenon capsule fibroblasts (OTFS) in vitro. METHODS: After OTFS from passages 4 to 6 47 vitro were induced by TGF-beta 1 and then treated by Y-27632, the changes of the OTFS cell cycles were analyzed via flow cytometry, and the proteins expression of the alpha -smooth muscular actin (alpha -SMA), connective tissue growth factor (CTGF), collagen I were calculated by Western blot. After OTFS treated by the different concentrations of Y-27632, the expression levels of the alpha -SMA, CTGF and collagen I mRNA were assayed by RT-PCR. RESULTS: Y-27632 had no markedly effect on the OTFS cell cycles. After treated by TGF-beta 1, OTFS in G1 period significantly increased. The cell cycles distribution by both TGF-beta 1 and Y-27632 had no remarkable difference from that in control group. Y-27632 significantly inhibited the proteins expressions of both alpha -SMA and CTGF, while to some extent inhibited that of collagen I. TGF-beta 1 significantly promoted the proteins expressions of alpha -SMA, CTGF and collagen I. After OTFS treated by both TGF-beta 1 and Y-27632, of alpha -SMA, the protein expression was similar with that in control group (P=0.066>0.05), but the protein expression of CTGF or collagen I, respectively, was significantly different from that in control group (P=0.000<0.01). The differences of expressions of the alpha -SMA, CTGF and collagen I mRNA in 30, 150, 750 mu mol/L Y-27632 group were statistically significant, compared with those in control group, respectively (alpha -SMA, P=0.002, 0.000, 0.000; CTGF, P=0.014, 0.002, 0.001; collagen I,P=0.003, 0.002, 0.000). CONCLUSION: Blocking the Rho/ROCK signaling pathway by using of Y-27632 could inhibit the cellular proliferation and the expression of both CTGF and alpha -SMA whatever OTFS induced by TGF-beta 1 or not. Y-27632 suppressed the expression of collagen I mRNA without induction.
文摘BACKGROUND: Previous studies have shown that transforming growth factor-beta 1 (TGF-beta 1) is the most potent means of stimulating liver fibrogenesis by myofibroblast-like cells derived from hepatic stellate cells. Thus, TGF-beta 1 could be a target for treating hepatic fibrosis. This study aimed to investigate the inhibitory effects of specific TGF-beta 1 small interference RNA (siRNA) on immune hepatic fibrosis induced by Concanavalin A (Con A) in mice. METHODS: Three short hairpin RNAs targeting different positions of TGF-beta 1 were designed and cloned to the plasmid pGenesil-1 to obtain three recombinant expression vectors (pGenesil-TGF-beta 1-ml, pGenesil-TGF-beta 1-m2 and pGenesil-TGF-beta 1-m3). Thirty male Kunming mice were randomly divided into 6 groups: normal, model, control, and three treatment groups. The immune hepatic fibrosis models were constructed by injecting Con A via the tail vein at 8 mg/kg per week for 6 weeks. At weeks 2, 4 and 6, pGenesil-TGF-beta 1-ml, pGenesil-TGF-beta 1-m2 or pGenesi1-TGF-beta 1-m3 was injected by a hydrodynamics-based transfection method via the tail vein at 0.8 ml/10 g within 24 hours after injection of Con A in each of the three treatment groups. The mice in the control group were injected with control plasmid pGenesil-HK at the same dose. All mice were sacrificed at week 7. The levels of hydroxyproline in liver tissue were determined by biochemistry. Liver histopathology was assessed by Van Gieson staining. The expression levels and localization of TGF-beta 1, Smad3, and Smad7 in liver tissue were detected by immunohistochemistry. The expression of TGF-beta 1, Smad3, Smad7 and alpha-smooth muscle actin (alpha-SMA) mRNAs in the liver were assessed by semi-quantitative RT-PCR. RESULTS: The levels of hydroxyproline in the liver tissue of the treatment groups were lower than those of the model group (P<0.01). Histopathologic assay showed that liver fibrogenesis was clearly improved in the treatment groups compared with the model group. The expression levels of TGF-beta 1 and Smad3 of liver tissue were also markedly lower in the treatment groups than in the model group (P<0.01), while the levels of Smad7 were higher in the treatment groups than in the model group (P<0.01). RT-PCR further showed that the expression of TGF-beta 1, Smad3 and alpha-SMA mRNA was significantly inhibited in the treatment groups compared with the model group, while the levels of Smad7 were increased. There was no difference in the above parameters among the three treatment groups or between the control and model groups (P>0.05), but the inhibitory effect of pGenesil-TGF-beta 1-ml was the highest among the treatment groups. CONCLUSIONS: Specific siRNA targeting of TGF-beta 1 markedly inhibited the fibrogenesis of immune hepatic fibrosis induced by Con A in mice. The anti-fibrosis mechanisms of siRNAs may be associated with the down-regulation of TGF-beta 1, Smad3 and alpha-SMA expression and up-regulation of Smad7 expression in liver tissue, which resulted in suppressing the activation of hepatic stellate cells. (Hepatobiliary Pancreat Dis Int 2009; 8: 300-308)
基金supported by the Niche Area Grant of the Hong Kong Polytechnic University through the projects JBB71 and BB8V
文摘The expression of the anti-apoptotic molecules Bcl-2 and transforming growth factor-beta 1 is known to confer protective effects on the cerebral ischemia-reperfusion injury.The current study investigated the expression levels of Bcl-2 and transforming growth factor-beta 1 in response to multiple pre-ischemia electro-acupuncture at acupoints Zusanli(ST36)and Fengchi(GB20) stimulation.Rats were divided into five groups:uninjured,control,non-acupoint,GB20 and ST36. Rats in the non-acupoint,GB20 and ST36 groups received 30 minutes(3 times or 18 times)of electro-acupuncture stimulation before experimental cerebral ischemia was induced.Bcl-2 and transforming growth factor-beta 1 were found to be significantly increased in the ST36 groups with either 3 or 18 electro-acupuncture treatments(P〈0.05).The production was higher with 18 electro-acupuncture treatments in the ST36 groups(P〈0.05).In the GB20 groups,significant increase was only observed in transforming growth factor-beta 1 with 18 electro-acupuncture treatments(P〈0.05).No significant elevation of the level of transforming growth factor-beta 1 was observed in the non-acupoint groups.However,the production of Bcl-2 increased with 18 treatments in the non-acupoint groups(P〈0.05).The data suggest that multiple pre-ischemia electro-acupuncture at ST36 was effective in conferring neuroprotective effect on the brain by means of upregulation of Bcl-2 and transforming growth factor-beta 1 and the effect was increase with the number of treatment.
基金grants fromthe Chinese Academy of Sciences (No. KJ951-BI608), the National Natural Sciences FOundation ofChina (No. 39625007 and
文摘We reported in this manuscript that TGF-beta1 induces apoptosis in AML12 murine hepatocytes, which is associated with the activation of p38 MAPK signaling pathway. SB202190, a specific inhibitor of p38 MAPK, strongly inhibited the TGF-beta1-induced apoptosis and PAI-1 promoter activity. Treatment of cells with TGF-beta1 activates p38. Furthermore, over-expression of dominant negative mutant p38 also reduced the TGF-beta1-induced apoptosis. The data indicate that the activation of p38 is involved in TGF-beta1-mediated gene expression and apoptosis.
文摘Aim In diabetic patients, metformin appears to provide cardiovascular protection that cannot be attribu- ted only to its antihyperglycemic effects. Metformin is also known as the AMP-activated protein kinase (AMPK) ac- tivator. Our previous study suggested that metformin inhibits transforming growth factor-β1 (TGF-β1) production in a mouse heart failure model of pressure overload. TGF-β1 is a key factor in cardiac fibrosis and is usually induced by Angiotensin Ⅱ (Ang Ⅱ ) in the pressure overload mouse models. This study investigated the effect of metformin on cardiac fibrosis and TGF-β production induced by AngII and the underlying mechanisms. Methods C57/BL6 wild-type and AMPKα2 knockout mice were used. AngII (3 mg · kg-1 · d-1) was infused subcutaneously into mice for 7 days. Adult mouse cardiac fibroblasts were isolated and treated with AngII ( 1 μmol · L-1) and/or met- formin (1 mmol · L-l). Results In C57/BL6 mice, metformin inhibits AngII-induced cardiac fibrosis. In cardi-ac fibroblasts, metformin inhibits TGF-β1 expression and production induced by AngII. AMPK inhibitor, com- pound C, reversed the effects of metformin. In vivo, AMPKα2 deficiency further increases AngII-induced TGF-β1 production. In cardiac fibroblasts, metformin inhibited AngII induced hepatocyte nuclear factor4 (HNF4ot protein level increase and HNF4α binding with TGF-β1 promoter using chromatin immunoprecipitation assay. In vivo, AMPKα2 deficiency further increased AngII-induced HNF4α protein level. Using HNF4α adenovirus, overexpress- ing HNF4α led to a 1.5-fold increase in TGF-β1 mRNA expression. HNF4a siRNA blocked AngII induced TGF- β1 production. Luciferase reporter with deleted HNF4a binding sites showed decreased TGFbl transcriptional activ- ity induced by AngII. In AMPK or2-/- heart, the inhibition of metformin on HNF4a protein was attenuated. Con- clusion Metformin inhibits AngII induced cardiac fibrosis and TGF-β1 production through AMPK activation. The underlying mechanism is that AMPK activation inhibits AngII induced HNF4α and then decreases TGF-β1 expres- sion.
基金National Natural Science Foundation of China,a New Anti-cancer Plant drug,SaponinⅠfrom Shuitianqi(Rhizoma Schizocapasae Plantagineae),against Invasion and Metastasis of Non-small Cell Lung Cancer and Reversing Tyrosine Kinase Inhibitors Resistance basing on Human Growth Factor/c-Mesenchymal to Epithelial Transition Factor Pathway and its Molecular Mechanism of Regulating Epithelial-Mesenchymal Transition(No.8164062)the Natural Science Foundation of Guangxi Province,Study on the Antihepatic Fibrosis Mechanism of Saponins from Shuitianqi(Rhizoma Schizocapasae Plantagineae)based on Transforming Growth Factor-β/Smad Signaling Pathway(No.2019GXNSFAA245075)。
文摘OBJECTIVE:To examine the influence of SaponinⅠfrom Shuitianqi(Rhizoma Schizocapasae Plantagineae)(SSPHⅠ)on hepatocellular carcinoma(HCC)metastasis,and to elucidate the underlying mechanism.METHODS:The intrahepatic metastasis Bagg's Albino/c(BALB/c)mouse model was established with human hepatocellular carcinomas(HepG2)cells,then treated with normal saline(once per day),cisplatin(2 mg/kg,once every 2 d),and SSPHⅠ(25,50,and 75 mg/kg,once per day).Then,we assessed alterations in the hepatic pathology and target protein expressions in the intrahepatic metastasis BALB/c mouse model using a series of molecular biology techniques.RESULTS:Based on our analysis,SSPHⅠsignificantly alleviated hepatocyte necrosis and tumor cells infiltration.Moreover,SSPHⅠsuppressed extracellular matrix(ECM)degradation and angiogenesis via a decrease in matrix etalloproteinase-2(MMP-2),MMP-9,CD31,CD34,and vascular endothelial growth factor(VEGF)levels.Furthermore,SSPHⅠrepressed invasion and metastasis by suppressing the transforming growth factor-β1(TGF-β1)/Smad7 axis and epithelial-mesenchymal transition(EMT),as evidenced by the scarce TGF-β1,Ncadherin,and Vimentin expressions,and elevated Smad7 and E-cadherin expressions.CONCLUSION:The SSPHⅠ-mediated negative regulation of the TGF-β1/Smad7 axis and EMT are critical for the inhibition of HCC invasion and metastasis.
基金supported by the Natural Science Foundation of Hubei Province,China(No.2010CDB09806)
文摘Long-term treatment with an agonist of peroxisome proliferator-activated receptor (PPAR)-γ is associated with bone fractures in the clinical practice. However, the mechanisms underlying the frac- tures are not fully understood. This study was aimed to examine the effect of rosiglitazone (an agonist of PPAR-T) of different doses on the proliferation, differentiation, and transforming growth factor beta 1 (TGF-131)-induced expression of connective tissue growth factor (CTGF) in primary rat osteoblasts in vitro. Osteoblasts were isolated from newly born SD rats and treated with different doses of rosiglita- zone (0-20 gmol/L). The proliferation and differentiation of osteoblasts were measured by MTT assay and NPP assay, respectively. The expression of CTGF was determined by RT-PCR and Western blotting. The results showed that most isolated osteoblasts displayed strong alkaline phosphatase (ALP) activity and treatment with different doses of rosiglitazone did not affect their proliferation, but significantly in- hibited the differentiation of osteoblasts in a dose-dependent manner. Moreover, treatment with different doses of rosiglitazone significantly reduced the TGF-131-induced CTGF mRNA transcription and protein expression in a dose-dependent manner in rat osteoblasts. It was concluded that the activation of PPAR-y may inhibit the differentiation of osteoblasts by reducing the TGF-131-induced CTGF expres- sion in vitro.
基金Supported by NHMRC Medical Postgraduate Scholarship and the Royal Brisbane and Women’s Hospital Research Foundation to Wood MJthe National Health and Medical Research Council(NHMRC)to Ramm GA and Powell LW+1 种基金the recipient of an NHMRC Senior Research Fellowship,1024672 to Subramaniam VNan NHMRC Senior Research Fellowship,No.552409 to Ramm GA
文摘AIM:To investigate the role of genetic polymorphisms in the progression of hepatic fibrosis in hereditary haemochromatosis.METHODS:A cohort of 245 well-characterised C282Y homozygous patients with haemochromatosis was studied,with all subjects having liver biopsy data and DNA available for testing.This study assessed the association of eight single nucleotide polymorphisms(SNPs)in a total of six genes including toll-like receptor 4(TLR4),transforming growth factor-beta(TGF-β),oxoguanine DNA glycosylase,monocyte chemoattractant protein 1,chemokine C-C motif receptor 2 and interleukin-10 with liver disease severity.Genotyping was performed using high resolution melt analysis and sequencing.The results were analysed in relation to the stage of hepatic fibrosis in multivariate analysis incorporating other cofactors including alcohol consumption and hepatic iron concentration.RESULTS:There were significant associations between the cofactors of male gender(P=0.0001),increasing age(P=0.006),alcohol consumption(P=0.0001),steatosis(P=0.03),hepatic iron concentration(P<0.0001)and the presence of hepatic fibrosis.Of the candidate gene polymorphisms studied,none showed a significant association with hepatic fibrosis in univariate or multivariate analysis incorporating cofactors.We also specifically studied patients with hepatic iron loading above threshold levels for cirrhosis and compared the genetic polymorphisms between those with no fibrosis vs cirrhosis however there was no significant effect from any of the candidate genes studied.Importantly,in this large,well characterised cohort of patients there was no association between SNPs for TGF-βor TLR4and the presence of fibrosis,cirrhosis or increasing fibrosis stage in multivariate analysis.CONCLUSION:In our large,well characterised group of haemochromatosis subjects we did not demonstrate any relationship between candidate gene polymorphisms and hepatic fibrosis or cirrhosis.