Hydrogen sulfide(H2S)is a signaling molecule that regulates plant hormone and stress responses.The phytohormone abscisic acid(ABA)plays an important role in plant adaptation to unfavorable environmental conditions and...Hydrogen sulfide(H2S)is a signaling molecule that regulates plant hormone and stress responses.The phytohormone abscisic acid(ABA)plays an important role in plant adaptation to unfavorable environmental conditions and induces the persulfidation of L-CYSTEINE DESULFHYDRASE1(DES1)and the production of H2S in guard cells.However,it remains largely unclear how H2S and protein persulfidation participate in the relay of ABA signals.In this study,we discovered that ABSCISIC ACID INSENSITIVE 4(ABI4)acts downstream of DES1 in the control of ABA responses in Arabidopsis.ABI4 undergoes persulfidation at Cys250 that is triggered in a time-dependent manner by ABA,and loss of DES1 function impairs this process.Cys250 and its persulfidation are essential for ABI4 function in the regulation of plant responses to ABA and the H2S donor NaHS during germination,seedling establishment,and stomatal closure,which are abolished in the ABI4Cys250Ala mutated variant.Introduction of the ABI4Cys250Ala variant into the abi4 des1 mutant did not rescue its hyposensitivity to ABA.Cys250 is critical for the binding of ABI4 to its cognate motif in the promoter of Mitogen-Activated Protein Kinase Kinase Kinase 18(MAPKKK18),which propagates the MAPK signaling cascade induced by ABA.Furthermore,the DES1-mediated persulfidation of ABI4 enhances the transactivation activity of ABI4 toward MAPKKK18,and ABI4 can bind the DES1 promoter,forming a regulatory loop.Taken together,these findings advance our understanding of a post-translational regulatory mechanism and suggest that ABI4 functions as an integrator of ABA and MAPK signals through a process in which DES1-produced H2S persulfidates ABI4 at Cys250.展开更多
The hexanucleotide repeat mutation in the intron-1 of the chromosome 9 open reading frame (C9orf72) is a frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Altered RNA folding pla...The hexanucleotide repeat mutation in the intron-1 of the chromosome 9 open reading frame (C9orf72) is a frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Altered RNA folding plays a role in ALS pathogenesis in two ways: non-ATG translation of the repeat can lead to aggregates of the known C9orf72 specific dipeptide polymer, whereas the repeat also can form neurotoxic RNA inclusions that dose-responsively kill motor neurons. We report the presence of a homology in the 5’untranslated region (UTR) of the messenger RNA encoding C9orf72 with the iron responsive elements (IRE) that control expression of iron-associated transcripts and predict that this RNA structure may iron-dependently regulate C9orf72 translation. We previously report altered serum ferritin levels track with severity of ALS in patients. Here, we conduct bioinformatics analyses to determine the secondary structure of the 5’UTR in C9orf72 mRNA and find it aligned with IREs in the human mitochondrial cis-aconitase and L and H-ferritin transcripts. Comparison of the role of RNA repeats in Friedriech’s ataxia and fragile X mental retardation suggests the utility of RNA based therapies for treatment of ALS. Antisense oligonucleotides (ASO) have been reported to therapeutically target these GGGGCC repeats. At the same time, because the function of C9orf72 is unknown, knockdown strategies carry some risk of inducing or compounding haploinsufficiency. We propose, for consideration, an approach that may enhance its therapeutic dynamic range by increasing the 5’UTR driven translation of C9orf72 protein to compensate for any potential ALS-specific or ASO-induced haploinsufficieny.展开更多
基金supported by grants from the National Natural Science Foundation of China(31670255)the National Natural Science Foundation of China of Jiangsu Province(BK20200561,BK20200282,BK20161447)+3 种基金the National Science Fund for Outstanding Young Scholars(21922702)the China Postdoctoral Science Foundation(2019M661860)the Fundamental Research Funds for the Central Universities(KYZ201859)the European Regional Development Fund through the Agenda Estatal de Investigacion(grant no.PID2019-109785GB-IOO).
文摘Hydrogen sulfide(H2S)is a signaling molecule that regulates plant hormone and stress responses.The phytohormone abscisic acid(ABA)plays an important role in plant adaptation to unfavorable environmental conditions and induces the persulfidation of L-CYSTEINE DESULFHYDRASE1(DES1)and the production of H2S in guard cells.However,it remains largely unclear how H2S and protein persulfidation participate in the relay of ABA signals.In this study,we discovered that ABSCISIC ACID INSENSITIVE 4(ABI4)acts downstream of DES1 in the control of ABA responses in Arabidopsis.ABI4 undergoes persulfidation at Cys250 that is triggered in a time-dependent manner by ABA,and loss of DES1 function impairs this process.Cys250 and its persulfidation are essential for ABI4 function in the regulation of plant responses to ABA and the H2S donor NaHS during germination,seedling establishment,and stomatal closure,which are abolished in the ABI4Cys250Ala mutated variant.Introduction of the ABI4Cys250Ala variant into the abi4 des1 mutant did not rescue its hyposensitivity to ABA.Cys250 is critical for the binding of ABI4 to its cognate motif in the promoter of Mitogen-Activated Protein Kinase Kinase Kinase 18(MAPKKK18),which propagates the MAPK signaling cascade induced by ABA.Furthermore,the DES1-mediated persulfidation of ABI4 enhances the transactivation activity of ABI4 toward MAPKKK18,and ABI4 can bind the DES1 promoter,forming a regulatory loop.Taken together,these findings advance our understanding of a post-translational regulatory mechanism and suggest that ABI4 functions as an integrator of ABA and MAPK signals through a process in which DES1-produced H2S persulfidates ABI4 at Cys250.
文摘The hexanucleotide repeat mutation in the intron-1 of the chromosome 9 open reading frame (C9orf72) is a frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Altered RNA folding plays a role in ALS pathogenesis in two ways: non-ATG translation of the repeat can lead to aggregates of the known C9orf72 specific dipeptide polymer, whereas the repeat also can form neurotoxic RNA inclusions that dose-responsively kill motor neurons. We report the presence of a homology in the 5’untranslated region (UTR) of the messenger RNA encoding C9orf72 with the iron responsive elements (IRE) that control expression of iron-associated transcripts and predict that this RNA structure may iron-dependently regulate C9orf72 translation. We previously report altered serum ferritin levels track with severity of ALS in patients. Here, we conduct bioinformatics analyses to determine the secondary structure of the 5’UTR in C9orf72 mRNA and find it aligned with IREs in the human mitochondrial cis-aconitase and L and H-ferritin transcripts. Comparison of the role of RNA repeats in Friedriech’s ataxia and fragile X mental retardation suggests the utility of RNA based therapies for treatment of ALS. Antisense oligonucleotides (ASO) have been reported to therapeutically target these GGGGCC repeats. At the same time, because the function of C9orf72 is unknown, knockdown strategies carry some risk of inducing or compounding haploinsufficiency. We propose, for consideration, an approach that may enhance its therapeutic dynamic range by increasing the 5’UTR driven translation of C9orf72 protein to compensate for any potential ALS-specific or ASO-induced haploinsufficieny.