A quadrature mixer with a shared transconductor stage is analyzed,including voltage conversion gain, linearity, noise figure, and image rejection. The analysis indicates it has better performance than a conventional G...A quadrature mixer with a shared transconductor stage is analyzed,including voltage conversion gain, linearity, noise figure, and image rejection. The analysis indicates it has better performance than a conventional Gilbert mixer pair in commutating mode. A quadrature down-conversion mixer based on this topology is designed and optimized for an ultra high frequency RFID reader. Operating in the 915MHz ISM band, the presented quadrature mixer measures a conversion gain of 12.5dB,an IIP3 of 10dBm, an IIP2 of 58dBm, and an SSB noise figure of 17.6riB. The chip was fabricated in a 0. 18μm 1P6M RF CMOS process and consumes only 3mA of current from a 1.8V power supply.展开更多
A common current source, generally used to bias cross-coupled differential amplifiers in a transconductor, controls third harmonic distortion (HD3) poorly. Separate current sources are shown to provide better control ...A common current source, generally used to bias cross-coupled differential amplifiers in a transconductor, controls third harmonic distortion (HD3) poorly. Separate current sources are shown to provide better control on HD3) . In this paper, a detailed design and analysis is presented for a transconductor made using this biasing technique. The transconductor, in addition, is made to offer high Gm, low power dissipation and is designed for linearly tunable Gm with current mode load as one of the applications. The circuit exhibits HD3) of less than –43.7 dB, high current efficiency of 1.18 V-1 and Gm of 390 μS at 1 VGp-p @ 50 MHz. UMC 0.18 μm CMOS process technology is used for simulation at supply voltage of 1.8 V.展开更多
An improved structure of linear transconductor is presented in this paper. It is analyzed in theory and simulated with Spectre based on 0.25μm CMOS process. The simulation results show that the differential input vol...An improved structure of linear transconductor is presented in this paper. It is analyzed in theory and simulated with Spectre based on 0.25μm CMOS process. The simulation results show that the differential input voltage of the proposed transconductor is 4.0Vpp(peak to peak), whereas the differential input voltage of the existing source degeneration structure is 2.2Vpp, when their nonlinear errors are required to be less than 0.15%.展开更多
A low voltage,highly linear transconductance-C(G_m-C) low-pass filter for wireless local area network (WLAN) transceiver application is proposed.This transmitter(Tx) filter adopts a 9.8 MHz 3rd-order Chebyshev l...A low voltage,highly linear transconductance-C(G_m-C) low-pass filter for wireless local area network (WLAN) transceiver application is proposed.This transmitter(Tx) filter adopts a 9.8 MHz 3rd-order Chebyshev low pass prototype and achieves 35 dB stop-band attenuation at 30 MHz frequency.By utilizing pseudo-differential linear-region MOS transconductors,the filter IIP_3 is measured to be as high as 9.5 dBm.Fabricated in a 0.35μm standard CMOS technology,the proposed filter chip occupies a 0.41×0.17 mm^2 die area and consumes 3.36 mA from a 3.3-V power supply.展开更多
A Gm-C complex filter with on-chip automatic tuning for wireless sensor networks is designed and implemented using 0.18 μm CMOS process. This filter is synthesized from a low-pass 5th-order Chebyshev RLC ladder filte...A Gm-C complex filter with on-chip automatic tuning for wireless sensor networks is designed and implemented using 0.18 μm CMOS process. This filter is synthesized from a low-pass 5th-order Chebyshev RLC ladder filter prototype by means of capacitors and fully balanced transconductors. A conventional phase-locked loop is used to realize the on-chip automatic tuning for both center frequency and bandwidth control. The filter is centered at 2 MHz with a bandwidth of 2.4 MHz. The measured results show that the filter provides more than 45 dB image rejection while the ripple in the pass-band is less than 1.2 dB. The complete filter including on-chip tuning circuit consumes 4.9 mA with 1.8 V single supply voltage.展开更多
A CMOS triode transconductor was developed with common mode feedback suitable for operating in low-voltage and low-power applications. The design is based on a body-driven input stage with feedback loops to extend bot...A CMOS triode transconductor was developed with common mode feedback suitable for operating in low-voltage and low-power applications. The design is based on a body-driven input stage with feedback loops to extend both the signal input range and the tuning capability. The effective transconductance of the body-driven triode stage is increased using a partial positive feedback technique which also partially solves the problem introduced by the small transconductance. This design uses the UMC 0.18 μm CMOS process. Simulations show the transconductor operated with 1 V supply voltage has less than -55 dB total harmonic distortions (THD) in the complete tuning range (0 V≤ Vcont≤ 0.43 V) for a 1 MHz 0.8 Vp-p differential input. The power consumption is 70 μW for a 0.43 V control voltage.展开更多
A complementary metal oxide semiconductor (CMOS) transconductor based on a high performance unity-gain buffer driving the degeneration resistor was used to obtain a highly linear voltage-to-current conversion with c...A complementary metal oxide semiconductor (CMOS) transconductor based on a high performance unity-gain buffer driving the degeneration resistor was used to obtain a highly linear voltage-to-current conversion with considerable reduction of the supply voltage. Simulations show that the transconductor using an 0.18-μm standard CMOS process with a 1.2-V supply voltage has less than -80 dB total harmonic distortion (THD) for a 1-MHz 0.4-Vp-p differential input signal. The third-order intermodulation is less than -63 dB for 0.25 Vp-p differential inputs at 1 MHz. The DC power consumption in the transconductor core is 240 μW. This topology is a feasible solution for low voltage and low power applications.展开更多
文摘A quadrature mixer with a shared transconductor stage is analyzed,including voltage conversion gain, linearity, noise figure, and image rejection. The analysis indicates it has better performance than a conventional Gilbert mixer pair in commutating mode. A quadrature down-conversion mixer based on this topology is designed and optimized for an ultra high frequency RFID reader. Operating in the 915MHz ISM band, the presented quadrature mixer measures a conversion gain of 12.5dB,an IIP3 of 10dBm, an IIP2 of 58dBm, and an SSB noise figure of 17.6riB. The chip was fabricated in a 0. 18μm 1P6M RF CMOS process and consumes only 3mA of current from a 1.8V power supply.
文摘A common current source, generally used to bias cross-coupled differential amplifiers in a transconductor, controls third harmonic distortion (HD3) poorly. Separate current sources are shown to provide better control on HD3) . In this paper, a detailed design and analysis is presented for a transconductor made using this biasing technique. The transconductor, in addition, is made to offer high Gm, low power dissipation and is designed for linearly tunable Gm with current mode load as one of the applications. The circuit exhibits HD3) of less than –43.7 dB, high current efficiency of 1.18 V-1 and Gm of 390 μS at 1 VGp-p @ 50 MHz. UMC 0.18 μm CMOS process technology is used for simulation at supply voltage of 1.8 V.
文摘An improved structure of linear transconductor is presented in this paper. It is analyzed in theory and simulated with Spectre based on 0.25μm CMOS process. The simulation results show that the differential input voltage of the proposed transconductor is 4.0Vpp(peak to peak), whereas the differential input voltage of the existing source degeneration structure is 2.2Vpp, when their nonlinear errors are required to be less than 0.15%.
文摘A low voltage,highly linear transconductance-C(G_m-C) low-pass filter for wireless local area network (WLAN) transceiver application is proposed.This transmitter(Tx) filter adopts a 9.8 MHz 3rd-order Chebyshev low pass prototype and achieves 35 dB stop-band attenuation at 30 MHz frequency.By utilizing pseudo-differential linear-region MOS transconductors,the filter IIP_3 is measured to be as high as 9.5 dBm.Fabricated in a 0.35μm standard CMOS technology,the proposed filter chip occupies a 0.41×0.17 mm^2 die area and consumes 3.36 mA from a 3.3-V power supply.
基金Project supported by the National High Technology Research and Development Program of China(No.2007AA01Z2A7)the 5th Program of Six Talent Summits of Jiangsu Province,China.
文摘A Gm-C complex filter with on-chip automatic tuning for wireless sensor networks is designed and implemented using 0.18 μm CMOS process. This filter is synthesized from a low-pass 5th-order Chebyshev RLC ladder filter prototype by means of capacitors and fully balanced transconductors. A conventional phase-locked loop is used to realize the on-chip automatic tuning for both center frequency and bandwidth control. The filter is centered at 2 MHz with a bandwidth of 2.4 MHz. The measured results show that the filter provides more than 45 dB image rejection while the ripple in the pass-band is less than 1.2 dB. The complete filter including on-chip tuning circuit consumes 4.9 mA with 1.8 V single supply voltage.
文摘A CMOS triode transconductor was developed with common mode feedback suitable for operating in low-voltage and low-power applications. The design is based on a body-driven input stage with feedback loops to extend both the signal input range and the tuning capability. The effective transconductance of the body-driven triode stage is increased using a partial positive feedback technique which also partially solves the problem introduced by the small transconductance. This design uses the UMC 0.18 μm CMOS process. Simulations show the transconductor operated with 1 V supply voltage has less than -55 dB total harmonic distortions (THD) in the complete tuning range (0 V≤ Vcont≤ 0.43 V) for a 1 MHz 0.8 Vp-p differential input. The power consumption is 70 μW for a 0.43 V control voltage.
基金Supported by the National High-Tech Research and Development (863) Program of China (No.2006AA01Z224)the National Natural Science Foundation of China (No.90707002)the Basic Research Foundation of Tsinghua National Laboratory for Information Science and Technology (TNList)
文摘A complementary metal oxide semiconductor (CMOS) transconductor based on a high performance unity-gain buffer driving the degeneration resistor was used to obtain a highly linear voltage-to-current conversion with considerable reduction of the supply voltage. Simulations show that the transconductor using an 0.18-μm standard CMOS process with a 1.2-V supply voltage has less than -80 dB total harmonic distortion (THD) for a 1-MHz 0.4-Vp-p differential input signal. The third-order intermodulation is less than -63 dB for 0.25 Vp-p differential inputs at 1 MHz. The DC power consumption in the transconductor core is 240 μW. This topology is a feasible solution for low voltage and low power applications.