Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regu...Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regulate plant response and defense to drought stress.Here we show that the BEL1-like transcription factor GhBLH5-A05 functions in cotton(Gossypium hirsutum)response and defense to drought stress.Expression of GhBLH5-A05 in cotton was induced by drought stress.Overexpression of GhBLH5-A05 in both Arabidopsis and cotton increased drought tolerance,whereas silencing GhBLH5-A05 in cotton resulted in elevated sensitivity to drought stress.GhBLH5-A05 binds to cis elements in the promoters of GhRD20-A09 and GhDREB2C-D05 to activate the expression of these genes.GhBLH5-A05 interacted with the KNOX transcription factor GhKNAT6-A03.Co-expression of GhBLH5-A05 and GhKNAT6-A03 increased the transcription of GhRD20-A09 and GhDREB2C-D05.We conclude that GhBLH5-A05 acts as a regulatory factor with GhKNAT6-A03 functioning in cotton response to drought stress by activating the expression of the drought-responsive genes GhRD20-A09 and GhDREB2C-D05.展开更多
Rosa roxburghii fruit is rich in flavonoids, but little is known about their biosynthetic pathways. In this study, we employed transcriptomics and metabolomics to study changes related to the flavonoids at five differ...Rosa roxburghii fruit is rich in flavonoids, but little is known about their biosynthetic pathways. In this study, we employed transcriptomics and metabolomics to study changes related to the flavonoids at five different stages of R. roxburghii fruit development. Flavonoids and the genes related to their biosynthesis were found to undergo significant changes in abundance across different developmental stages, and numerous quercetin derivatives were identified. We found three gene expression modules that were significantly associated with the abundances of the different flavonoids in R. roxburghii and identified three structural UDP-glycosyltransferase genes directly involved in the synthesis of quercetin derivatives within these modules. In addition, we found that RrBEH4, RrLBD1 and RrPIF8could significantly increase the expression of downstream quercetin derivative biosynthesis genes. Taken together,these results provide new insights into the metabolism of flavonoids and the accumulation of quercetin derivatives in R. roxburghii.展开更多
WRKY transcription factors,transcriptional regulators unique to plants,play an important role in defense response to pathogen infection.However,the resistance mechanisms of WRKY genes in sugarcane remain unclear.In th...WRKY transcription factors,transcriptional regulators unique to plants,play an important role in defense response to pathogen infection.However,the resistance mechanisms of WRKY genes in sugarcane remain unclear.In the present study,gene ontology(GO)enrichment analysis revealed that WRKY gene family in sugarcane was extensively involved in the response to biotic stress and in defense response.We identified gene ScWRKY4,a classⅡc member of the WRKY gene family,in sugarcane cultivar ROC22.This gene was induced by salicylic acid(SA)and methyl jasmonate(MeJA)stress.Interestingly,expression of ScWRKY4 was down-regulated in smut-resistant sugarcane cultivars but up-regulated in smutsusceptible sugarcane cultivars infected with Sporisorium scitamineum.Moreover,stable overexpression of the ScWRKY4 gene in Nicotiana benthamiana enhanced susceptibility to Fusarium solani var.coeruleum and caused down-regulated expression of immune marker-related genes.Transcriptome analysis indicated suppressed expression of most JAZ genes in the signal transduction pathway.ScWRKY4 interacted with ScJAZ13 to repress its expression.We thus hypothesized that the ScWRKY4 gene was involved in the regulatory network of plant disease resistance,most likely through the JA signaling pathway.The present study depicting the molecular involvement of ScWRKY4 in sugarcane disease resistance lays a foundation for future investigation.展开更多
Sorghum is not only an important bio-energy crop but also a vital raw material for brewing.Exogenous copper affects the growth and metabolism of crops in specific ways.This study identified 8475 differentially expressed...Sorghum is not only an important bio-energy crop but also a vital raw material for brewing.Exogenous copper affects the growth and metabolism of crops in specific ways.This study identified 8475 differentially expressed genes(DEGs)by high-throughput transcriptome sequencing in the sorghum cultivar‘Jinnuoliang 2’after 24 h of treatment with 10 mM CuSO4.Using GO analysis,476 genes were functionally annotated,which were mainly related to catabolism and biosynthetic processes.Additionally,90 pathways were annotated by employing the KEGG analysis.Among them,glutathione metabolism and peroxisome were induced,while photosynthesis,photosynthesis-antenna protein,and carbon sequestration of photosynthetic organisms were inhibited.Of the DEGs,399 were identified to encode transcription factors belonging to 49 families.This study also identified a WRKY transcription factor-encoding gene SbWRKY24 from the transcriptome data.For studying its function,the relative expression levels of SbWRKY24 in roots and leaves post-treatment with different growth hormones and exposure to a variety of abiotic stresses were detected by RT-qPCR.SbWRKY24 showed treatment-and tis-sue-specific expression patterns,indicating its unique role in stress tolerance.This study lays a theoretical basis for the functional exploration of SbWRKY24,elucidating the mechanism of copper resistance,and elaborating on the stress responses in sorghum.It also guides the exploration of the molecular mechanism of copper ions inducing intracellular signal transduction pathways.展开更多
Abortive transcript(AT)is a 2-19 nt long non-coding RNA that is produced in the abortive initiation stage.Abortive initiation was found to be closely related to RNA polymerase through in vitro experiments.Therefore,th...Abortive transcript(AT)is a 2-19 nt long non-coding RNA that is produced in the abortive initiation stage.Abortive initiation was found to be closely related to RNA polymerase through in vitro experiments.Therefore,the distribution of AT length and the scale of abortive initiation are correlated to the promoter,discriminator,and transcription initiation sequence,and can be affected by transcription elongation factors.AT plays an important role in the occurrence and development of various diseases.Here we summarize the discovery of AT,the factors responsible for AT formation,the detection methods and biological functions of AT,to provide new clues for finding potential targets in the early diagnosis and treatment of cancers.展开更多
Transcription factors(TFs)play essential roles in transcriptional reprogramming during activation of plant immune responses to pathogens.OsSPL10(SQUAMOSA promoter binding protein-like10)is an important TF regulating t...Transcription factors(TFs)play essential roles in transcriptional reprogramming during activation of plant immune responses to pathogens.OsSPL10(SQUAMOSA promoter binding protein-like10)is an important TF regulating trichome development and salt tolerance in rice.Here we report that knockout of OsSPL10 reduces whereas its overexpression enhances rice resistance to blast disease.OsSPL10 positively regulates chitin-induced immune responses including reactive oxygen species(ROS)burst and callose deposition.We show that OsSPL10 physically associates with OsJAmyb,an important TF involved in jasmonic acid(JA)signaling,and positively regulates its protein stability.We then prove that OsJAmyb positively regulates resistance to blast.Our results reveal a molecular module consisting of OsSPL10 and OsJAmyb that positively regulates blast resistance.展开更多
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord...Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord.Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination,proliferation,specification,differentiation,migration,survival,axonogenesis,and synaptogenesis.These processes are precisely regulated in a tempo-spatial manner by intrinsic factors,extrinsic signals,and neural activities.The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions(such as sensory information integration,motor coordination,and cognition)but also to prevent the onset and progression of neurodevelopmental disorders(such as intellectual disability,autism spectrum disorders,anxiety,and depression).This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.展开更多
Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biol...Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biological processes.During transcriptional regulation,dynamic condensates are formed through interactions between transcriptional elements,such as transcription factors,coactivators,and mediators.Cancer is a disease characterized by uncontrolled cell proliferation,but the precise mechanisms underlying tumorigenesis often remain to be elucidated.Emerging evidence has linked abnormal transcriptional condensates to several diseases,especially cancer,implying that phase separation plays an important role in tumorigenesis.Condensates formed by phase separation may have an effect on gene transcription in tumors.In the present review,we focus on the correlation between phase separation and transcriptional regulation,as well as how this phenomenon contributes to cancer development.展开更多
BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has sho...BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has shown potential neuroprotective effects;however,the mechanisms underlying such a function remain unclear.AIM To investigate potential Tan-ⅡA neuroprotective effects in AD and to elucidate their underlying mechanisms.METHODS Hematoxylin and eosin staining was utilized to analyze structural brain tissue morphology.To assess changes in oxidative stress and neuroinflammation,we performed enzyme-linked immunosorbent assay and western blotting.Additionally,the effect of Tan-ⅡA on AD cell models was evaluated in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Genetic changes related to the long non-coding RNA(lncRNA)nuclear-enriched abundant transcript 1(NEAT1)/microRNA(miRNA,miR)-291a-3p/member RAS oncogene family Rab22a axis were assessed through reverse transcription quantitative polymerase chain reaction.RESULTS In vivo,Tan-ⅡA treatment improved neuronal morphology and attenuated oxidative stress and neuroinflammation in the brain tissue of AD mice.In vitro experiments showed that Tan-ⅡA dose-dependently ameliorated the amyloid-beta 1-42-induced reduction of neural stem cell viability,apoptosis,oxidative stress,and neuroinflammation.In this process,the lncRNA NEAT1-a potential therapeutic target-is highly expressed in AD mice and downregulated via Tan-ⅡA treatment.Mechanistically,NEAT1 promotes the transcription and translation of Rab22a via miR-291a-3p,which activates nuclear factor kappa-B(NF-κB)signaling,leading to activation of the pro-apoptotic B-cell lymphoma 2-associated X protein and inhibition of the anti-apoptotic B-cell lymphoma 2 protein,which exacerbates AD.Tan-ⅡA intervention effectively blocked this process by inhibiting the NEAT1/miR-291a-3p/Rab22a axis and NF-κB signaling.CONCLUSION This study demonstrates that Tan-ⅡA exerts neuroprotective effects in AD by modulating the NEAT1/miR-291a-3p/Rab22a/NF-κB signaling pathway,serving as a foundation for the development of innovative approaches for AD therapy.展开更多
Meiosis is a highly complex process significantly influenced by transcriptional regulation.However,studies on the mechanisms that govern transcriptomic changes during meiosis,especially in prophase I,are limited.Here,...Meiosis is a highly complex process significantly influenced by transcriptional regulation.However,studies on the mechanisms that govern transcriptomic changes during meiosis,especially in prophase I,are limited.Here,we performed single-cell ATAC-seq of human testis tissues and observed reprogramming during the transition from zygotene to pachytene spermatocytes.This event,conserved in mice,involved the deactivation of genes associated with meiosis after reprogramming and the activation of those related to spermatogenesis before their functional onset.Furthermore,we identified 282 transcriptional regulators(TRs)that underwent activation or deactivation subsequent to this process.Evidence suggested that physical contact signals from Sertoli cells may regulate these TRs in spermatocytes,while secreted ENHO signals may alter metabolic patterns in these cells.Our results further indicated that defective transcriptional reprogramming may be associated with non-obstructive azoospermia(NOA).This study revealed the importance of both physical contact and secreted signals between Sertoli cells and germ cells in meiotic progression.展开更多
Wild soybean(Glycine soja),a relative of cultivated soybean,shows high adaptability to adverse environmental conditions.We identified and characterized a wild soybean transcription factor gene,GsWRKY40,that promotes p...Wild soybean(Glycine soja),a relative of cultivated soybean,shows high adaptability to adverse environmental conditions.We identified and characterized a wild soybean transcription factor gene,GsWRKY40,that promotes plant salt stress.GsWRKY40 was highly expressed in wild soybean roots and was up-regulated by salt treatment.GsWRKY40 was localized in nucleus and demonstrated DNA-binding activities but without transcriptional activation.Mutation and overexpression of GsWRKY40 altered salt tolerance of Arabidopsis plants.To understand the molecular mechanism of GsWRKY40 in regulating plant salt resistance,we screened a cDNA library and identified a GsWRKY40 interacting protein GsbHLH92 by using yeast two-hybrid approach.The physical interaction of GsWRKY40 and GsbHLH92 was confirmed by co-immunoprecipitation(co-IP),GST pull-down,and bimolecular fluorescence complementation(BiFC)techniques.Intriguingly,co-overexpression of GsWRKY40 and GsbHLH92 resulted in higher salt tolerance and lower ROS levels than overexpression of GsWRKY40 or GsbHLH92 in composite soybean plants,suggesting that GsWRKY40 and GsbHLH92 may synergistically regulate plant salt resistance through inhibiting ROS production.qRT-PCR data indicated that the expression level of GmSPOD1 gene encoding peroxidase was cooperatively regulated by GsWRKY40 and GsbHLH92,which was confirmed by using a dual luciferase report system and yeast one-hybrid experiment.Our study reveals a pathway that GsWRKY40 and GsbHLH92 collaboratively up-regulate plant salt resistance through impeding GmSPOD1 expression and reducing ROS levels,providing a novel perspective on the regulatory mechanisms underlying plant tolerance to abiotic stresses.展开更多
Inducing adventitious root(AR)formation in mature walnut species(Juglans L.)is challenging.However,the AR formation of mature trees can be improved by rejuvenation.In rejuvenated cuttings,exogenous indole-3-butyric ac...Inducing adventitious root(AR)formation in mature walnut species(Juglans L.)is challenging.However,the AR formation of mature trees can be improved by rejuvenation.In rejuvenated cuttings,exogenous indole-3-butyric acid(IBA)is essential for AR formation,and the underlying mechanism is still not well understood.Therefore,we utilized transcriptome sequencing to investigate the mechanism of IBA-induced AR formation.Our results revealed that,in comparison to the control group,IBA treatment(9 mmol·L^(-1))significantly increased the endogenous indole-3-acetic acid(IAA)content,leading to an enhanced rooting rate.We performed RNA sequencing to identify differentially expressed genes(DEGs)between the IBA-treated and control(CK)groups at 1,2,3,and 5 days after cutting(DAC).The results showed that,compared to the control cuttings,there were 1539,889,785,and 984 up-regulated genes and 2791,2936,3017,and 1752 down-regulated genes,at 1,2,3,and 5 DAC,respectively.Analysis of RNA-seq data revealed that G-type ATP-binding cassette 36/37(ABCG36/37)and ATP-binding cassette subfamily D 1(ABCD1),associated with IBA transport,were down-regulated in the rejuvenation cuttings.In contrast,PIN-FORMED(PIN)and PINOID(PID),associated with auxin efflux,were up-regulated.We identified 49 auxin/indole-3-acetic acid(AUX/IAA)-encoding genes,including IAA1,IAA3,IAA5,IAA6,IAA8,IAA11,IAA12,IAA19,and IAA20,which were up-regulated at 1-5 DAC in the rejuvenated cuttings.This study highlights that the overexpression of JrWOX5/11 in poplar significantly enhance AR growth,as evidenced by increased root length,surface area,volume,and quantity.Moreover,the co-expression network analysis involving JrWOX11 and JrWOX5 in walnut cuttings elucidates complex genetic interactions,underscoring their pivotal role in the formation of AR.Our data supported the following molecular mechanism of IBA-induced adventitious root formation.Firstly,IBA is converted to free IAA in peroxisomes.Then,the highly concentrated IAA in the procambium and parenchyma cells induces WUSCHEL-related homeobox 11(WOX11)expression at two days.Finally,WOX11 acts redundantly to up-regulate WOX5,initiating the development of root primordia cells.展开更多
Avirulence effectors(Avrs),encoded by plant pathogens,can be recognized by plants harboring the corresponding resistance proteins,thereby initiating effector-triggered immunity(ETI).In susceptible plants,however,Avrs ...Avirulence effectors(Avrs),encoded by plant pathogens,can be recognized by plants harboring the corresponding resistance proteins,thereby initiating effector-triggered immunity(ETI).In susceptible plants,however,Avrs can function as effectors,facilitating infection via effector-triggered susceptibility(ETS).Mechanisms of Avr-mediated ETS remain largely unexplored.Here we report that the Magnaporthe oryzae effector Avr-PikD enters rice cells via the canonical cytoplasmic secretion pathway and suppresses rice basal defense.Avr-PikD interacts with an LSD1-like transcriptional activator AKIP30 of rice,and AKIP30 is also a positive regulator of rice immunity,whereas Avr-PikD impedes its nuclear localization and suppresses its transcriptional activity.In summary,M.oryzae delivers Avr-PikD into rice cells to facilitate ETS by inhibiting AKIP30-mediated transcriptional regulation of immune response against M.oryzae.展开更多
Self-rooted apple stock is widely used for apple production.However,the shallowness of the adventitious roots in self-rooted apple stock leads to poor performance in the barren orchards of China.This is because of the...Self-rooted apple stock is widely used for apple production.However,the shallowness of the adventitious roots in self-rooted apple stock leads to poor performance in the barren orchards of China.This is because of the considerable difference in the development of a gravitropic set-point angle(GSA)between self-rooted apple stock and seedling rootstock.Therefore,it is crucial to study the molecular mechanism of adventitious root GSA in self-rooted apple stock for breeding self-rooted and deep-rooted apple rootstock cultivars.An apple auxin response factor MdARF19 functioned to establish the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals.MdARF19 bound directly to the MdPIN7 promoter,activating its transcriptional expression and thus regulating the formation of the adventitious root GSA in 12-2 self-rooted apple stock.However,MdARF19 influenced the expression of auxin efflux carriers(MdPIN3 and MdPIN10)and the establishment of adventitious root GSA of self-rooted apple stock in response to gravity signals by direct activation of MdFLP.Our findings provide new information on the transcriptional regulation of MdPIN7 by auxin response factor MdARF19 in the regulation of the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals.展开更多
Leaf adaxial-abaxial(ad-abaxial)polarity is crucial for leaf morphology and function,but the genetic machinery governing this process remains unclear.To uncover critical genes involved in leaf ad-abaxial patterning,we...Leaf adaxial-abaxial(ad-abaxial)polarity is crucial for leaf morphology and function,but the genetic machinery governing this process remains unclear.To uncover critical genes involved in leaf ad-abaxial patterning,we applied a combination of in silico prediction using machine learning(ML)and experimental analysis.A Random Forest model was trained using genes known to influence ad-abaxial polarity as ground truth.Gene expression data from various tissues and conditions as well as promoter regulation data derived from transcription factor chromatin immunoprecipitation sequencing(ChIP-seq)was used as input,enabling the prediction of novel ad-abaxial polarity-related genes and additional transcription factors.Parallel to this,available and newly-obtained transcriptome data enabled us to identify genes differentially expressed across leaf ad-abaxial sides.Based on these analyses,we obtained a set of 111 novel genes which are involved in leaf ad-abaxial specialization.To explore implications for vegetable crop breeding,we examined the conservation of expression patterns between Arabidopsis and Brassica rapa using single-cell transcriptomics.The results demonstrated the utility of our computational approach for predicting candidate genes in crop species.Our findings expand the understanding of the genetic networks governing leaf ad-abaxial differentiation in agriculturally important vegetables,enhancing comprehension of natural variation impacting leaf morphology and development,with demonstrable breeding applications.展开更多
SNF1-related protein kinase 2(SnRK2)family members are essential components of the plant abscisic acid(ABA)signaling pathway initiated by osmotic stress and triggering a drought stress response.This study characterize...SNF1-related protein kinase 2(SnRK2)family members are essential components of the plant abscisic acid(ABA)signaling pathway initiated by osmotic stress and triggering a drought stress response.This study characterized the molecular properties of TaSnRK2.4 and its function in mediating adaptation to drought in Triticum aestivum.Transcripts of TaSnRK2.4 were upregulated upon drought and ABA signaling and associated with drought-and ABA-responsive cis-elements ABRE and DRE,and MYB and MYC binding sites in the promoter as indicated by reporter GUS protein staining and activity driven by truncations of the promoter.Yeast two-hybrid,BiFC,and Co-IP assays indicated that TaSnRK2.4 protein interacts with TaPP2C01 and an ABF transcription factor(TF)TaABF2.The results suggested that TaSnRK2.4 forms a functional TaPP2C01-TaSnRK2.4-TaABF2 module with its upstream and downstream partners.Transgene analysis revealed that TaSnRK2.4 and TaABF2 positively regulate drought tolerance whereas TaPP2C01 acts negatively by modulating stomatal movement,osmotic adjustment,reactive oxygen species(ROS)homeostasis,and root morphology.Expression analysis,yeast one-hybrid,and transcriptional activation assays indicated that several osmotic stress-responsive genes,including TaSLAC1-4,TaP5CS3,TaSOD5,TaCAT1,and TaPIN4,are regulated by TaABF2.Transgene analysis verified their functions in positively regulating stomatal movement(TaSLAC1-4),proline accumulation(TaP5CS3),SOD activity(TaSOD5),CAT activity(TaCAT1),and root morphology(TaPIN4).There were high correlations between plant biomass and yield with module transcripts in a wheat variety panel cultivated under drought conditions in the field.Our findings provide insights into understanding plant drought response underlying the SnRK2 signaling pathway in common wheat.展开更多
Objective:The clinical significance of homologous recombination deficiency(HRD)in breast cancer,ovarian cancer,and prostate cancer has been established,but the value of HRD in non-small cell lung cancer(NSCLC)has not ...Objective:The clinical significance of homologous recombination deficiency(HRD)in breast cancer,ovarian cancer,and prostate cancer has been established,but the value of HRD in non-small cell lung cancer(NSCLC)has not been fully investigated.This study aimed to systematically analyze the HRD status of untreated NSCLC and its relationship with patient prognosis to further guide clinical care.Methods:A total of 355 treatment-naïve NSCLC patients were retrospectively enrolled.HRD status was assessed using the AmoyDx Genomic Scar Score(GSS),with a score of≥50 considered HRD-positive.Genomic,transcriptomic,tumor microenvironmental characteristics and prognosis between HRD-positive and HRDnegative patients were analyzed.Results:Of the patients,25.1%(89/355)were HRD-positive.Compared to HRD-negative patients,HRDpositive patients had more somatic pathogenic homologous recombination repair(HRR)mutations,higher tumor mutation burden(TMB)(P<0.001),and fewer driver gene mutations(P<0.001).Furthermore,HRD-positive NSCLC had more amplifications in PI3K pathway and cell cycle genes,MET and MYC in epidermal growth factor receptor(EGFR)/anaplastic lymphoma kinase(ALK)mutant NSCLC,and more PIK3CA and AURKA in EGFR/ALK wild-type NSCLC.HRD-positive NSCLC displayed higher tumor proliferation and immunosuppression activity.HRD-negative NSCLC showed activated signatures of major histocompatibility complex(MHC)-II,interferon(IFN)-γand effector memory CD8+T cells.HRD-positive patients had a worse prognosis and shorter progressionfree survival(PFS)to targeted therapy(first-and third-generation EGFR-TKIs)(P=0.042).Additionally,HRDpositive,EGFR/ALK wild-type patients showed a numerically lower response to platinum-free immunotherapy regimens.Conclusions:Unique genomic and transcriptional characteristics were found in HRD-positive NSCLC.Poor prognosis and poor response to EGFR-TKIs and immunotherapy were observed in HRD-positive NSCLC.This study highlights potential actionable alterations in HRD-positive NSCLC,suggesting possible combinational therapeutic strategies for these patients.展开更多
Climate deterioration,water shortages,and abiotic stress are the main threats worldwide that seriously affect cotton growth,yield,and fiber quality.Therefore,research on improving cotton yield and tolerance to biotic ...Climate deterioration,water shortages,and abiotic stress are the main threats worldwide that seriously affect cotton growth,yield,and fiber quality.Therefore,research on improving cotton yield and tolerance to biotic and abiotic stresses is of great importance.The NAC proteins are crucial and plant-specific transcription factors(TFs)that are involved in cotton growth,development,and stress responses.The comprehensive utilization of cotton NAC TFs in the improvement of cotton varieties through novel biotechnological methods is feasible.Based on cotton genomic data,genome-wide identification and analyses have revealed potential functions of cotton NAC genes.Here,we comprehensively summarize the recent progress in understanding cotton NAC TFs roles in regulating responses to drought,salt,and Verticillium wilt-related stresses,as well as leaf senescence and the development of fibers,xylem,and glands.The detailed regulatory network of NAC proteins in cotton is also elucidated.Cotton NAC TFs directly bind to the promoters of genes associated with ABA biosynthesis and secondary cell-wall formation,participate in several biological processes by interacting with related proteins,and regulate the expression of downstream genes.Studies have shown that the overexpression of NAC TF genes in cotton and other model plants improve their drought or salt tolerance.This review elucidates the latest findings on the functions and regulation of cotton NAC proteins,broadens our understanding of cotton NAC TFs,and lays a fundamental foundation for further molecular breeding research in cotton.展开更多
AIM:To investigate the proliferation regulatory effect of cone-rod homeobox(CRX)in retinal pigment epithelium(RPE)and retinoblastoma(RB)cells to explore the potential application and side effect(oncogenic potential)of...AIM:To investigate the proliferation regulatory effect of cone-rod homeobox(CRX)in retinal pigment epithelium(RPE)and retinoblastoma(RB)cells to explore the potential application and side effect(oncogenic potential)of CRXbased gene therapy in RPE-based retinopathies.METHODS:Adult human retinal pigment epithelial(ARPE)-19 and human retinal pigment epithelial(RPE)-1 cells and Y79 RB cell were used in the study.Genetic manipulation was performed by lentivirus-based technology.The cell proliferation was determined by a CellTiter-Glo Reagent.The mRNA and protein levels were determined by quantitative real-time polymerase chain reaction(qPCR)and Western blot assay.The transcriptional activity of the promoter was determined by luciferase reporter gene assay.The bindings between CRX and transcription factor 7(TCF7)promoter as well as TCF7 and the promoters of TCF7 target genes were examined by chromatin immunoprecipitation(ChIP)assay.The transcription of the TCF7 was determined by a modified nuclear run-on assay.RESULTS:CRX overexpression and knockdown significantly increased(n=3,P<0.05 in all the cells)and decreased(n=3,P<0.01 in all the cells)the proliferation of RPE and RB cells.CRX overexpression and knockdown significantly increased and deceased the mRNA levels of Wnt signaling target genes[including MYC proto-oncogene(MYC),JUN,FOS like 1(FOSL1),CCND1,cyclin D2(CCND2),cyclin D3(CCND3),cellular communication network factor 4(CCN4),peroxisome proliferator activated receptor delta(PPARD),and matrix metallopeptidase 7(MMP7)]and the luciferase activity driven by the Wnt signaling transcription factor(TCF7).TCF7 overexpression and knockdown significantly increased and decreased the proliferation of RPE and RB cells and depletion of TCF7 significantly abolished the stimulatory effect of CRX on the proliferation of RPE and RB cells.CRX overexpression and knockdown significantly increased and decreased the mRNA level of TCF7 and the promoter of TCF7 was significantly immunoprecipitated by CRX antibody.CONCLUSION:CRX transcriptionally activates TCF7 to promote the proliferation of RPE and RB cells in vitro.CRX is a potential target for RPE-based regenerative medicine.The potential risk of this strategy,tumorigenic potential,should be considered.展开更多
Objective:To investigate the molecular mechanism and identify potential drugs for subthreshold depression(SD),and elucidate the detalied mechanism of Danzhi Xiaoyao powder(DZXY)in SD.Methods:Using RNA-sequencing,we id...Objective:To investigate the molecular mechanism and identify potential drugs for subthreshold depression(SD),and elucidate the detalied mechanism of Danzhi Xiaoyao powder(DZXY)in SD.Methods:Using RNA-sequencing,we identified differentially expressed genes(DEGs)in leukocytes of SD compared to healthy controls,deciphered their functions and pathways,and identified the hub genes of SD.We also assessed changes in leukocyte transcription factor activity in patients with SD using the TELis platform.The Connectivity Map database was retrieved to screen candidate drugs for SD.Based on network pharmacology,we elucidated the"multi-component,multi-target,and multi-pathway"mechanism of DZXY in the treatment of SD.Results:We identified 1080 DEGs(padj<0.05 and|log2(fold change)l≥1&protein coding)in the leukocytes of patients with SD.These DEGs,including hub genes,were primarily involved in immune and inflammatory response-related processes.Transcription factor activity analysis revealed similarities between the leukocyte transcriptome profile in SD and the conserved transcriptional response to adversities in immune cells.Connectivity Map analysis identified 28 potential drugs for SD treatment,particularly SB-202190 and TWS-119.Constructing the"Direct Compounds-Direct Targets-Pathways"network for DZXY and SD revealed the curative mechanisms of DZXY in SD,primarily including inflammatory response,lipid metabolism,immune response,and other processes.Conclusion:These results provide new insights into the characteristics and functional changes of leukocytes in SD,partially illustrate the pathogenesis of SD,and suggest potential drugs for SD.The curative mechanisms of DZXY in SD are also partially elucidated.展开更多
基金supported by the Project from the Ministry of Agriculture of China for Transgenic Research(2014ZX0800927B)the National Natural Science Foundation of China(31871667).
文摘Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regulate plant response and defense to drought stress.Here we show that the BEL1-like transcription factor GhBLH5-A05 functions in cotton(Gossypium hirsutum)response and defense to drought stress.Expression of GhBLH5-A05 in cotton was induced by drought stress.Overexpression of GhBLH5-A05 in both Arabidopsis and cotton increased drought tolerance,whereas silencing GhBLH5-A05 in cotton resulted in elevated sensitivity to drought stress.GhBLH5-A05 binds to cis elements in the promoters of GhRD20-A09 and GhDREB2C-D05 to activate the expression of these genes.GhBLH5-A05 interacted with the KNOX transcription factor GhKNAT6-A03.Co-expression of GhBLH5-A05 and GhKNAT6-A03 increased the transcription of GhRD20-A09 and GhDREB2C-D05.We conclude that GhBLH5-A05 acts as a regulatory factor with GhKNAT6-A03 functioning in cotton response to drought stress by activating the expression of the drought-responsive genes GhRD20-A09 and GhDREB2C-D05.
基金supported in part by the Priority Academic Program Development of Jiangsu Higher Education Institutions and the State Key Laboratory of Crop Genetics and Germplasm Enhancement,China(ZW201813)。
文摘Rosa roxburghii fruit is rich in flavonoids, but little is known about their biosynthetic pathways. In this study, we employed transcriptomics and metabolomics to study changes related to the flavonoids at five different stages of R. roxburghii fruit development. Flavonoids and the genes related to their biosynthesis were found to undergo significant changes in abundance across different developmental stages, and numerous quercetin derivatives were identified. We found three gene expression modules that were significantly associated with the abundances of the different flavonoids in R. roxburghii and identified three structural UDP-glycosyltransferase genes directly involved in the synthesis of quercetin derivatives within these modules. In addition, we found that RrBEH4, RrLBD1 and RrPIF8could significantly increase the expression of downstream quercetin derivative biosynthesis genes. Taken together,these results provide new insights into the metabolism of flavonoids and the accumulation of quercetin derivatives in R. roxburghii.
基金supported by the National Key Research and Development Program of China(2022YFD2301100 and 2019YFD1000503)the Natural Science Foundation of Fujian Province(2021J01137)+1 种基金the Special Fund for Science and Technology Innovation of Fujian Agriculture and Forestry University(CXZX2020081A)the China Agriculture Research System(CARS-17).
文摘WRKY transcription factors,transcriptional regulators unique to plants,play an important role in defense response to pathogen infection.However,the resistance mechanisms of WRKY genes in sugarcane remain unclear.In the present study,gene ontology(GO)enrichment analysis revealed that WRKY gene family in sugarcane was extensively involved in the response to biotic stress and in defense response.We identified gene ScWRKY4,a classⅡc member of the WRKY gene family,in sugarcane cultivar ROC22.This gene was induced by salicylic acid(SA)and methyl jasmonate(MeJA)stress.Interestingly,expression of ScWRKY4 was down-regulated in smut-resistant sugarcane cultivars but up-regulated in smutsusceptible sugarcane cultivars infected with Sporisorium scitamineum.Moreover,stable overexpression of the ScWRKY4 gene in Nicotiana benthamiana enhanced susceptibility to Fusarium solani var.coeruleum and caused down-regulated expression of immune marker-related genes.Transcriptome analysis indicated suppressed expression of most JAZ genes in the signal transduction pathway.ScWRKY4 interacted with ScJAZ13 to repress its expression.We thus hypothesized that the ScWRKY4 gene was involved in the regulatory network of plant disease resistance,most likely through the JA signaling pathway.The present study depicting the molecular involvement of ScWRKY4 in sugarcane disease resistance lays a foundation for future investigation.
基金funded by the Key Planned Projects of the Sichuan Provincial Department of Science&Technology(2020YFN0023)the Cooperation Project of Wuliangye Group Co.,Ltd.,and Sichuan University of Science&Engineering,China(CXY2021ZR010).
文摘Sorghum is not only an important bio-energy crop but also a vital raw material for brewing.Exogenous copper affects the growth and metabolism of crops in specific ways.This study identified 8475 differentially expressed genes(DEGs)by high-throughput transcriptome sequencing in the sorghum cultivar‘Jinnuoliang 2’after 24 h of treatment with 10 mM CuSO4.Using GO analysis,476 genes were functionally annotated,which were mainly related to catabolism and biosynthetic processes.Additionally,90 pathways were annotated by employing the KEGG analysis.Among them,glutathione metabolism and peroxisome were induced,while photosynthesis,photosynthesis-antenna protein,and carbon sequestration of photosynthetic organisms were inhibited.Of the DEGs,399 were identified to encode transcription factors belonging to 49 families.This study also identified a WRKY transcription factor-encoding gene SbWRKY24 from the transcriptome data.For studying its function,the relative expression levels of SbWRKY24 in roots and leaves post-treatment with different growth hormones and exposure to a variety of abiotic stresses were detected by RT-qPCR.SbWRKY24 showed treatment-and tis-sue-specific expression patterns,indicating its unique role in stress tolerance.This study lays a theoretical basis for the functional exploration of SbWRKY24,elucidating the mechanism of copper resistance,and elaborating on the stress responses in sorghum.It also guides the exploration of the molecular mechanism of copper ions inducing intracellular signal transduction pathways.
基金Supported by Key Science and Technology Research and Development Program Project of Guangxi,No.AB22035017.
文摘Abortive transcript(AT)is a 2-19 nt long non-coding RNA that is produced in the abortive initiation stage.Abortive initiation was found to be closely related to RNA polymerase through in vitro experiments.Therefore,the distribution of AT length and the scale of abortive initiation are correlated to the promoter,discriminator,and transcription initiation sequence,and can be affected by transcription elongation factors.AT plays an important role in the occurrence and development of various diseases.Here we summarize the discovery of AT,the factors responsible for AT formation,the detection methods and biological functions of AT,to provide new clues for finding potential targets in the early diagnosis and treatment of cancers.
基金supported by grants from Natural Science Foundation Key Program of Fujian Province(2023J02011)National Natural Science Foundation of China(31970281,31671668)+1 种基金a Sino-German Mobility Program funded jointly by National Natural Science Foundation of ChinaGerman Research Foundation(M-0275).
文摘Transcription factors(TFs)play essential roles in transcriptional reprogramming during activation of plant immune responses to pathogens.OsSPL10(SQUAMOSA promoter binding protein-like10)is an important TF regulating trichome development and salt tolerance in rice.Here we report that knockout of OsSPL10 reduces whereas its overexpression enhances rice resistance to blast disease.OsSPL10 positively regulates chitin-induced immune responses including reactive oxygen species(ROS)burst and callose deposition.We show that OsSPL10 physically associates with OsJAmyb,an important TF involved in jasmonic acid(JA)signaling,and positively regulates its protein stability.We then prove that OsJAmyb positively regulates resistance to blast.Our results reveal a molecular module consisting of OsSPL10 and OsJAmyb that positively regulates blast resistance.
基金supported by Guangdong Provincial Basic and Applied Basic Research Fund,No.2021A1515011299(to KT)。
文摘Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord.Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination,proliferation,specification,differentiation,migration,survival,axonogenesis,and synaptogenesis.These processes are precisely regulated in a tempo-spatial manner by intrinsic factors,extrinsic signals,and neural activities.The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions(such as sensory information integration,motor coordination,and cognition)but also to prevent the onset and progression of neurodevelopmental disorders(such as intellectual disability,autism spectrum disorders,anxiety,and depression).This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.
基金supported by the Jiangsu Province Natural Science Foundation(Grant No.BK20201492)the Key Medical Research Project of Jiangsu Provincial Health Commission(Grant No.K2019002)the Clinical Capacity Improvement Project of Jiangsu Province People's Hospital(Grant No.JSPH-MA-2021-8).
文摘Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biological processes.During transcriptional regulation,dynamic condensates are formed through interactions between transcriptional elements,such as transcription factors,coactivators,and mediators.Cancer is a disease characterized by uncontrolled cell proliferation,but the precise mechanisms underlying tumorigenesis often remain to be elucidated.Emerging evidence has linked abnormal transcriptional condensates to several diseases,especially cancer,implying that phase separation plays an important role in tumorigenesis.Condensates formed by phase separation may have an effect on gene transcription in tumors.In the present review,we focus on the correlation between phase separation and transcriptional regulation,as well as how this phenomenon contributes to cancer development.
基金Supported by 2020 Guangxi Zhuang Autonomous Region Health Care Commission Self-Financing Research Projects,No.Z202000962023 Guangxi University Young and Middle-Aged Teachers’Basic Research Ability Improvement Project,No.2023KY0091+1 种基金National Natural Science Foundation of China,No.82260241the Natural Science Foundation of Guangxi Province,No.2015GXNSFAA139171 and No.2020GXNSFAA259053.
文摘BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has shown potential neuroprotective effects;however,the mechanisms underlying such a function remain unclear.AIM To investigate potential Tan-ⅡA neuroprotective effects in AD and to elucidate their underlying mechanisms.METHODS Hematoxylin and eosin staining was utilized to analyze structural brain tissue morphology.To assess changes in oxidative stress and neuroinflammation,we performed enzyme-linked immunosorbent assay and western blotting.Additionally,the effect of Tan-ⅡA on AD cell models was evaluated in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Genetic changes related to the long non-coding RNA(lncRNA)nuclear-enriched abundant transcript 1(NEAT1)/microRNA(miRNA,miR)-291a-3p/member RAS oncogene family Rab22a axis were assessed through reverse transcription quantitative polymerase chain reaction.RESULTS In vivo,Tan-ⅡA treatment improved neuronal morphology and attenuated oxidative stress and neuroinflammation in the brain tissue of AD mice.In vitro experiments showed that Tan-ⅡA dose-dependently ameliorated the amyloid-beta 1-42-induced reduction of neural stem cell viability,apoptosis,oxidative stress,and neuroinflammation.In this process,the lncRNA NEAT1-a potential therapeutic target-is highly expressed in AD mice and downregulated via Tan-ⅡA treatment.Mechanistically,NEAT1 promotes the transcription and translation of Rab22a via miR-291a-3p,which activates nuclear factor kappa-B(NF-κB)signaling,leading to activation of the pro-apoptotic B-cell lymphoma 2-associated X protein and inhibition of the anti-apoptotic B-cell lymphoma 2 protein,which exacerbates AD.Tan-ⅡA intervention effectively blocked this process by inhibiting the NEAT1/miR-291a-3p/Rab22a axis and NF-κB signaling.CONCLUSION This study demonstrates that Tan-ⅡA exerts neuroprotective effects in AD by modulating the NEAT1/miR-291a-3p/Rab22a/NF-κB signaling pathway,serving as a foundation for the development of innovative approaches for AD therapy.
基金supported by the National Natural Science Foundation of China(82271645)National Key Research and Development Program of China(2021YFC2700200 to F.S.)。
文摘Meiosis is a highly complex process significantly influenced by transcriptional regulation.However,studies on the mechanisms that govern transcriptomic changes during meiosis,especially in prophase I,are limited.Here,we performed single-cell ATAC-seq of human testis tissues and observed reprogramming during the transition from zygotene to pachytene spermatocytes.This event,conserved in mice,involved the deactivation of genes associated with meiosis after reprogramming and the activation of those related to spermatogenesis before their functional onset.Furthermore,we identified 282 transcriptional regulators(TRs)that underwent activation or deactivation subsequent to this process.Evidence suggested that physical contact signals from Sertoli cells may regulate these TRs in spermatocytes,while secreted ENHO signals may alter metabolic patterns in these cells.Our results further indicated that defective transcriptional reprogramming may be associated with non-obstructive azoospermia(NOA).This study revealed the importance of both physical contact and secreted signals between Sertoli cells and germ cells in meiotic progression.
基金financially supported by the National Key Research and Development Program of China(2021YFD120110402)the National Natural Science Foundation of China(32272048,32272017)the Natural Science Foundation of Heilongjiang Province(LH2022C019)。
文摘Wild soybean(Glycine soja),a relative of cultivated soybean,shows high adaptability to adverse environmental conditions.We identified and characterized a wild soybean transcription factor gene,GsWRKY40,that promotes plant salt stress.GsWRKY40 was highly expressed in wild soybean roots and was up-regulated by salt treatment.GsWRKY40 was localized in nucleus and demonstrated DNA-binding activities but without transcriptional activation.Mutation and overexpression of GsWRKY40 altered salt tolerance of Arabidopsis plants.To understand the molecular mechanism of GsWRKY40 in regulating plant salt resistance,we screened a cDNA library and identified a GsWRKY40 interacting protein GsbHLH92 by using yeast two-hybrid approach.The physical interaction of GsWRKY40 and GsbHLH92 was confirmed by co-immunoprecipitation(co-IP),GST pull-down,and bimolecular fluorescence complementation(BiFC)techniques.Intriguingly,co-overexpression of GsWRKY40 and GsbHLH92 resulted in higher salt tolerance and lower ROS levels than overexpression of GsWRKY40 or GsbHLH92 in composite soybean plants,suggesting that GsWRKY40 and GsbHLH92 may synergistically regulate plant salt resistance through inhibiting ROS production.qRT-PCR data indicated that the expression level of GmSPOD1 gene encoding peroxidase was cooperatively regulated by GsWRKY40 and GsbHLH92,which was confirmed by using a dual luciferase report system and yeast one-hybrid experiment.Our study reveals a pathway that GsWRKY40 and GsbHLH92 collaboratively up-regulate plant salt resistance through impeding GmSPOD1 expression and reducing ROS levels,providing a novel perspective on the regulatory mechanisms underlying plant tolerance to abiotic stresses.
基金supported by the National Natural Science Foundation of China(Grant No.32101479)。
文摘Inducing adventitious root(AR)formation in mature walnut species(Juglans L.)is challenging.However,the AR formation of mature trees can be improved by rejuvenation.In rejuvenated cuttings,exogenous indole-3-butyric acid(IBA)is essential for AR formation,and the underlying mechanism is still not well understood.Therefore,we utilized transcriptome sequencing to investigate the mechanism of IBA-induced AR formation.Our results revealed that,in comparison to the control group,IBA treatment(9 mmol·L^(-1))significantly increased the endogenous indole-3-acetic acid(IAA)content,leading to an enhanced rooting rate.We performed RNA sequencing to identify differentially expressed genes(DEGs)between the IBA-treated and control(CK)groups at 1,2,3,and 5 days after cutting(DAC).The results showed that,compared to the control cuttings,there were 1539,889,785,and 984 up-regulated genes and 2791,2936,3017,and 1752 down-regulated genes,at 1,2,3,and 5 DAC,respectively.Analysis of RNA-seq data revealed that G-type ATP-binding cassette 36/37(ABCG36/37)and ATP-binding cassette subfamily D 1(ABCD1),associated with IBA transport,were down-regulated in the rejuvenation cuttings.In contrast,PIN-FORMED(PIN)and PINOID(PID),associated with auxin efflux,were up-regulated.We identified 49 auxin/indole-3-acetic acid(AUX/IAA)-encoding genes,including IAA1,IAA3,IAA5,IAA6,IAA8,IAA11,IAA12,IAA19,and IAA20,which were up-regulated at 1-5 DAC in the rejuvenated cuttings.This study highlights that the overexpression of JrWOX5/11 in poplar significantly enhance AR growth,as evidenced by increased root length,surface area,volume,and quantity.Moreover,the co-expression network analysis involving JrWOX11 and JrWOX5 in walnut cuttings elucidates complex genetic interactions,underscoring their pivotal role in the formation of AR.Our data supported the following molecular mechanism of IBA-induced adventitious root formation.Firstly,IBA is converted to free IAA in peroxisomes.Then,the highly concentrated IAA in the procambium and parenchyma cells induces WUSCHEL-related homeobox 11(WOX11)expression at two days.Finally,WOX11 acts redundantly to up-regulate WOX5,initiating the development of root primordia cells.
基金supported by grants from the National Natural Science Foundation of China(31401692,31901960,32272513,32001976)the Natural Science Foundation of Fujian Province(2019J01766,2023J011418,2020J05177)+3 种基金Fujian Provincial Science and Technology Key Project(2022NZ030014)External Cooperation Program of Fujian Academy of Agricultural Sciences(DWHZ-2024-23)State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crop Opening Project(SKL2019005)Project of Fujian Provincial Department of Education(JAT190627)。
文摘Avirulence effectors(Avrs),encoded by plant pathogens,can be recognized by plants harboring the corresponding resistance proteins,thereby initiating effector-triggered immunity(ETI).In susceptible plants,however,Avrs can function as effectors,facilitating infection via effector-triggered susceptibility(ETS).Mechanisms of Avr-mediated ETS remain largely unexplored.Here we report that the Magnaporthe oryzae effector Avr-PikD enters rice cells via the canonical cytoplasmic secretion pathway and suppresses rice basal defense.Avr-PikD interacts with an LSD1-like transcriptional activator AKIP30 of rice,and AKIP30 is also a positive regulator of rice immunity,whereas Avr-PikD impedes its nuclear localization and suppresses its transcriptional activity.In summary,M.oryzae delivers Avr-PikD into rice cells to facilitate ETS by inhibiting AKIP30-mediated transcriptional regulation of immune response against M.oryzae.
基金the National Natural Science Foundation of China(Grant Nos.32102310,32202484,and 32072520)the Shandong Key Research and Development Program,China(Grant Nos.2021LZGC007 and 2022TZXD009).
文摘Self-rooted apple stock is widely used for apple production.However,the shallowness of the adventitious roots in self-rooted apple stock leads to poor performance in the barren orchards of China.This is because of the considerable difference in the development of a gravitropic set-point angle(GSA)between self-rooted apple stock and seedling rootstock.Therefore,it is crucial to study the molecular mechanism of adventitious root GSA in self-rooted apple stock for breeding self-rooted and deep-rooted apple rootstock cultivars.An apple auxin response factor MdARF19 functioned to establish the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals.MdARF19 bound directly to the MdPIN7 promoter,activating its transcriptional expression and thus regulating the formation of the adventitious root GSA in 12-2 self-rooted apple stock.However,MdARF19 influenced the expression of auxin efflux carriers(MdPIN3 and MdPIN10)and the establishment of adventitious root GSA of self-rooted apple stock in response to gravity signals by direct activation of MdFLP.Our findings provide new information on the transcriptional regulation of MdPIN7 by auxin response factor MdARF19 in the regulation of the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals.
基金supported by the National Key Research and Development Program of China (Grant No.2022YFF1003003)the Central Public-interest Scientific Institution Basal Research Fund (Grant No.Y2023PT16)+1 种基金the Agricultural Science and Technology Innovation Program (ASTIP)supported by China Scholarship Council (Grant No.202103250097)。
文摘Leaf adaxial-abaxial(ad-abaxial)polarity is crucial for leaf morphology and function,but the genetic machinery governing this process remains unclear.To uncover critical genes involved in leaf ad-abaxial patterning,we applied a combination of in silico prediction using machine learning(ML)and experimental analysis.A Random Forest model was trained using genes known to influence ad-abaxial polarity as ground truth.Gene expression data from various tissues and conditions as well as promoter regulation data derived from transcription factor chromatin immunoprecipitation sequencing(ChIP-seq)was used as input,enabling the prediction of novel ad-abaxial polarity-related genes and additional transcription factors.Parallel to this,available and newly-obtained transcriptome data enabled us to identify genes differentially expressed across leaf ad-abaxial sides.Based on these analyses,we obtained a set of 111 novel genes which are involved in leaf ad-abaxial specialization.To explore implications for vegetable crop breeding,we examined the conservation of expression patterns between Arabidopsis and Brassica rapa using single-cell transcriptomics.The results demonstrated the utility of our computational approach for predicting candidate genes in crop species.Our findings expand the understanding of the genetic networks governing leaf ad-abaxial differentiation in agriculturally important vegetables,enhancing comprehension of natural variation impacting leaf morphology and development,with demonstrable breeding applications.
基金supported by National Key Research and Development Program of China(2022YFD1200202)State Key Laboratory of North China Crop Improvement and Regulation(NCCIR2022ZZ-7)Graduate Student Innovation Ability Training Funding Project of Hebei Province(CXZZBS2023073)。
文摘SNF1-related protein kinase 2(SnRK2)family members are essential components of the plant abscisic acid(ABA)signaling pathway initiated by osmotic stress and triggering a drought stress response.This study characterized the molecular properties of TaSnRK2.4 and its function in mediating adaptation to drought in Triticum aestivum.Transcripts of TaSnRK2.4 were upregulated upon drought and ABA signaling and associated with drought-and ABA-responsive cis-elements ABRE and DRE,and MYB and MYC binding sites in the promoter as indicated by reporter GUS protein staining and activity driven by truncations of the promoter.Yeast two-hybrid,BiFC,and Co-IP assays indicated that TaSnRK2.4 protein interacts with TaPP2C01 and an ABF transcription factor(TF)TaABF2.The results suggested that TaSnRK2.4 forms a functional TaPP2C01-TaSnRK2.4-TaABF2 module with its upstream and downstream partners.Transgene analysis revealed that TaSnRK2.4 and TaABF2 positively regulate drought tolerance whereas TaPP2C01 acts negatively by modulating stomatal movement,osmotic adjustment,reactive oxygen species(ROS)homeostasis,and root morphology.Expression analysis,yeast one-hybrid,and transcriptional activation assays indicated that several osmotic stress-responsive genes,including TaSLAC1-4,TaP5CS3,TaSOD5,TaCAT1,and TaPIN4,are regulated by TaABF2.Transgene analysis verified their functions in positively regulating stomatal movement(TaSLAC1-4),proline accumulation(TaP5CS3),SOD activity(TaSOD5),CAT activity(TaCAT1),and root morphology(TaPIN4).There were high correlations between plant biomass and yield with module transcripts in a wheat variety panel cultivated under drought conditions in the field.Our findings provide insights into understanding plant drought response underlying the SnRK2 signaling pathway in common wheat.
基金supported by the National High Level Hospital Clinical Research Funding(No.BJ-2219-195 and No.BJ-2023-090).
文摘Objective:The clinical significance of homologous recombination deficiency(HRD)in breast cancer,ovarian cancer,and prostate cancer has been established,but the value of HRD in non-small cell lung cancer(NSCLC)has not been fully investigated.This study aimed to systematically analyze the HRD status of untreated NSCLC and its relationship with patient prognosis to further guide clinical care.Methods:A total of 355 treatment-naïve NSCLC patients were retrospectively enrolled.HRD status was assessed using the AmoyDx Genomic Scar Score(GSS),with a score of≥50 considered HRD-positive.Genomic,transcriptomic,tumor microenvironmental characteristics and prognosis between HRD-positive and HRDnegative patients were analyzed.Results:Of the patients,25.1%(89/355)were HRD-positive.Compared to HRD-negative patients,HRDpositive patients had more somatic pathogenic homologous recombination repair(HRR)mutations,higher tumor mutation burden(TMB)(P<0.001),and fewer driver gene mutations(P<0.001).Furthermore,HRD-positive NSCLC had more amplifications in PI3K pathway and cell cycle genes,MET and MYC in epidermal growth factor receptor(EGFR)/anaplastic lymphoma kinase(ALK)mutant NSCLC,and more PIK3CA and AURKA in EGFR/ALK wild-type NSCLC.HRD-positive NSCLC displayed higher tumor proliferation and immunosuppression activity.HRD-negative NSCLC showed activated signatures of major histocompatibility complex(MHC)-II,interferon(IFN)-γand effector memory CD8+T cells.HRD-positive patients had a worse prognosis and shorter progressionfree survival(PFS)to targeted therapy(first-and third-generation EGFR-TKIs)(P=0.042).Additionally,HRDpositive,EGFR/ALK wild-type patients showed a numerically lower response to platinum-free immunotherapy regimens.Conclusions:Unique genomic and transcriptional characteristics were found in HRD-positive NSCLC.Poor prognosis and poor response to EGFR-TKIs and immunotherapy were observed in HRD-positive NSCLC.This study highlights potential actionable alterations in HRD-positive NSCLC,suggesting possible combinational therapeutic strategies for these patients.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(32101797)Central Public-interest Scientific Institution Basal Research Fund(No.1610162023020)。
文摘Climate deterioration,water shortages,and abiotic stress are the main threats worldwide that seriously affect cotton growth,yield,and fiber quality.Therefore,research on improving cotton yield and tolerance to biotic and abiotic stresses is of great importance.The NAC proteins are crucial and plant-specific transcription factors(TFs)that are involved in cotton growth,development,and stress responses.The comprehensive utilization of cotton NAC TFs in the improvement of cotton varieties through novel biotechnological methods is feasible.Based on cotton genomic data,genome-wide identification and analyses have revealed potential functions of cotton NAC genes.Here,we comprehensively summarize the recent progress in understanding cotton NAC TFs roles in regulating responses to drought,salt,and Verticillium wilt-related stresses,as well as leaf senescence and the development of fibers,xylem,and glands.The detailed regulatory network of NAC proteins in cotton is also elucidated.Cotton NAC TFs directly bind to the promoters of genes associated with ABA biosynthesis and secondary cell-wall formation,participate in several biological processes by interacting with related proteins,and regulate the expression of downstream genes.Studies have shown that the overexpression of NAC TF genes in cotton and other model plants improve their drought or salt tolerance.This review elucidates the latest findings on the functions and regulation of cotton NAC proteins,broadens our understanding of cotton NAC TFs,and lays a fundamental foundation for further molecular breeding research in cotton.
基金Supported by grants from the Zhejiang Medicine and Health Science and Technology Project(No.2018KY748)Ningbo Natural Science Foundation(No.2019A610352)+3 种基金Ningbo Major Scientific and Technological Research and“Unveiling and Commanding”Project(No.2021Z054)Chongqing Science&Technology Commission(No.CSTB2022NSCQ-MSX1413)Ningbo Clinical Research Center for Ophthalmology(No.2022L003)Ningbo Key Laboratory for Neuroretinopathy Medical Research,and the Project of NINGBO Leading Medical&Health Discipline(No.2016-S05).
文摘AIM:To investigate the proliferation regulatory effect of cone-rod homeobox(CRX)in retinal pigment epithelium(RPE)and retinoblastoma(RB)cells to explore the potential application and side effect(oncogenic potential)of CRXbased gene therapy in RPE-based retinopathies.METHODS:Adult human retinal pigment epithelial(ARPE)-19 and human retinal pigment epithelial(RPE)-1 cells and Y79 RB cell were used in the study.Genetic manipulation was performed by lentivirus-based technology.The cell proliferation was determined by a CellTiter-Glo Reagent.The mRNA and protein levels were determined by quantitative real-time polymerase chain reaction(qPCR)and Western blot assay.The transcriptional activity of the promoter was determined by luciferase reporter gene assay.The bindings between CRX and transcription factor 7(TCF7)promoter as well as TCF7 and the promoters of TCF7 target genes were examined by chromatin immunoprecipitation(ChIP)assay.The transcription of the TCF7 was determined by a modified nuclear run-on assay.RESULTS:CRX overexpression and knockdown significantly increased(n=3,P<0.05 in all the cells)and decreased(n=3,P<0.01 in all the cells)the proliferation of RPE and RB cells.CRX overexpression and knockdown significantly increased and deceased the mRNA levels of Wnt signaling target genes[including MYC proto-oncogene(MYC),JUN,FOS like 1(FOSL1),CCND1,cyclin D2(CCND2),cyclin D3(CCND3),cellular communication network factor 4(CCN4),peroxisome proliferator activated receptor delta(PPARD),and matrix metallopeptidase 7(MMP7)]and the luciferase activity driven by the Wnt signaling transcription factor(TCF7).TCF7 overexpression and knockdown significantly increased and decreased the proliferation of RPE and RB cells and depletion of TCF7 significantly abolished the stimulatory effect of CRX on the proliferation of RPE and RB cells.CRX overexpression and knockdown significantly increased and decreased the mRNA level of TCF7 and the promoter of TCF7 was significantly immunoprecipitated by CRX antibody.CONCLUSION:CRX transcriptionally activates TCF7 to promote the proliferation of RPE and RB cells in vitro.CRX is a potential target for RPE-based regenerative medicine.The potential risk of this strategy,tumorigenic potential,should be considered.
基金supported by the National Key Research and Development Program of China(SQ2019YFC170218).
文摘Objective:To investigate the molecular mechanism and identify potential drugs for subthreshold depression(SD),and elucidate the detalied mechanism of Danzhi Xiaoyao powder(DZXY)in SD.Methods:Using RNA-sequencing,we identified differentially expressed genes(DEGs)in leukocytes of SD compared to healthy controls,deciphered their functions and pathways,and identified the hub genes of SD.We also assessed changes in leukocyte transcription factor activity in patients with SD using the TELis platform.The Connectivity Map database was retrieved to screen candidate drugs for SD.Based on network pharmacology,we elucidated the"multi-component,multi-target,and multi-pathway"mechanism of DZXY in the treatment of SD.Results:We identified 1080 DEGs(padj<0.05 and|log2(fold change)l≥1&protein coding)in the leukocytes of patients with SD.These DEGs,including hub genes,were primarily involved in immune and inflammatory response-related processes.Transcription factor activity analysis revealed similarities between the leukocyte transcriptome profile in SD and the conserved transcriptional response to adversities in immune cells.Connectivity Map analysis identified 28 potential drugs for SD treatment,particularly SB-202190 and TWS-119.Constructing the"Direct Compounds-Direct Targets-Pathways"network for DZXY and SD revealed the curative mechanisms of DZXY in SD,primarily including inflammatory response,lipid metabolism,immune response,and other processes.Conclusion:These results provide new insights into the characteristics and functional changes of leukocytes in SD,partially illustrate the pathogenesis of SD,and suggest potential drugs for SD.The curative mechanisms of DZXY in SD are also partially elucidated.