期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Heat Recuperation for the Self-Condensing CO_(2)Transcritical Power Cycle
1
作者 PAN Lisheng SHI Weixiu +2 位作者 SUN Yin SUN Yiwei WEI Xiaolin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第5期1630-1641,共12页
The supercritical CO_(2)Brayton cycle has potential to be used in electricity generation occasions with its advantages of high efficiency and compact structure.Focusing on a so-called self-condensing CO_(2)transcritic... The supercritical CO_(2)Brayton cycle has potential to be used in electricity generation occasions with its advantages of high efficiency and compact structure.Focusing on a so-called self-condensing CO_(2)transcritical power cycle,a model was established and four different layouts of heat recuperation process were analyzed,a without-recuperation cycle,a post-recuperation cycle,a pre-recuperation cycle and a re-recuperation cycle.The results showed that the internal normal cycle's share of the whole cycle increases with increasing the cooling pressure and decreasing the final cooled temperature.Heat load in the supercritical heater decreases with increasing the cooling pressure.From perspective of performance,the re-recuperation cycle and the pre-recuperation cycle have similar thermal efficiency which is much higher than other two layouts.Both thermal efficiency and net power output have a maximum value with the cooling pressure,except in the condition with the final cooled temperature of 31℃.Considering both the complexity and the economy,the pre-recuperation cycle is more applicable than the other options.Under 35℃of the final cooled temperature,the thermal efficiency of the pre-recuperation cycle reaches the peak 0.34 with the cooling pressure of 8.4 MPa and the maximum net power output is 2355.24 kW at 8.2 MPa of the cooling pressure. 展开更多
关键词 CO_(2)transcritical power cycle heat recuperation process self-condensing
原文传递
Combustion Characteristic and Mechanism of a Mixture Working Fluid C_(3)H_(8)/CO_(2)
2
作者 SHI Weixiu PAN Lisheng +4 位作者 JIN Suyi DONG Yuehua LI Teng ZHAO Jing WEI Xiaolin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第5期1768-1779,共12页
In the CO_(2)transcritical power cycle,conventional cooling water can hardly condense subcritical CO_(2)because its critical temperature is as low as 30.98°C.In order to avoid this condensing problem,CO_(2)-based... In the CO_(2)transcritical power cycle,conventional cooling water can hardly condense subcritical CO_(2)because its critical temperature is as low as 30.98°C.In order to avoid this condensing problem,CO_(2)-based mixtures have been proposed as working fluids for transcritical power cycle.They can raise the critical temperature by mixing a little C_(3)H_(8)as the secondary component to CO_(2).However,the flammability of the mixture may limit its application.This article investigated laminar flame speed of C_(3)H_(8)/CO_(2)which represents the mixture’s combustion characteristic by a so-called heat flux method and studied the inhibition mechanism of CO_(2)on the combustion based on the Premixed Laminar Flame-Speed Calculation reactor of Chemkin-Pro.The experimental results showed that the laminar flame speed shows a peak value with changing the equivalence ratio and accelerates with raising the mole fraction of the organic gas.Additionally,a slight upwards trend was observed for the corresponding equivalence ratio of the peaks.The flammable range for the equivalence ratio extended with the mole fraction of C_(3)H_(8)increasing.With the mole fraction of C_(3)H_(8)of 0.15,the maximum laminar flame speed was 12.8 cm/s,31.7%of that of the pure C_(3)H_(8).The flammable range was from 0.41 to 1.33,decreasing by 23.3%compared with that of C_(3)H_(8).A flammable critical mixing ratio was also found as 0.08/0.92 for C_(3)H_(8)/CO_(2)at the normal condition.By simulating,it was found that the most key free radical and elementary reaction which determine the inhibition of CO_(2)on the combustion are OH and H+O_(2)=O+OH,respectively. 展开更多
关键词 CO_(2)-based mixture FLAMMABILITY laminar flame speed flammable critical mixing ratio transcritical power cycle
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部