期刊文献+
共找到873篇文章
< 1 2 44 >
每页显示 20 50 100
The state-of-the-art of atmospheric pressure plasma for transdermal drug delivery
1
作者 聂兰兰 刘大伟 +2 位作者 程鹤 赵峰 卢新培 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期9-26,共18页
Plasma-enhanced transdermal drug delivery(TDD) presents advantages over traditional methods,including painless application, minimal skin damage, and rapid recovery of permeability. To harness its clinical potential, f... Plasma-enhanced transdermal drug delivery(TDD) presents advantages over traditional methods,including painless application, minimal skin damage, and rapid recovery of permeability. To harness its clinical potential, factors related to plasma’s unique properties, such as reactive species and electric fields, must be carefully considered.This review provides a concise summary of conventional TDD methods and subsequently offers a comprehensive examination of the current state-of-the-art in plasma-enhanced TDD. This includes an analysis of the impact of plasma on HaCaT human keratinocyte cells, ex vivo/in vivo studies, and clinical research on plasma-assisted TDD. Moreover, the review explores the effects of plasma on skin physical characteristics such as microhole formation, transepidermal water loss(TEWL), molecular structure of the stratum corneum(SC), and skin resistance. Additionally, it discusses the involvement of various reactive agents in plasma-enhanced TDD, encompassing electric fields,charged particles, UV/VUV radiation, heat, and reactive species. Lastly, the review briefly addresses the temporal behavior of the skin after plasma treatment, safety considerations, and potential risks associated with plasma-enhanced TDD. 展开更多
关键词 PLASMA transdermal drug delivery skin physical characteristics reactive agents
下载PDF
Ionic liquids as the effective technology for enhancing transdermal drug delivery: Design principles, roles, mechanisms, and future challenges
2
作者 Xuejun Chen Ziqing Li +1 位作者 Chunrong Yang Degong Yang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第2期38-51,共14页
Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of act... Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of action mechanisms remain to be explored. In this review, basic design principles of ideal ILs for transdermal drug delivery system (TDDS) are discussed considering melting point, skin permeability, and toxicity, which depend on the molar ratios, types, functional groups of ions and inter-ionic interactions. Secondly, the contributions of ILs to the development of TDDS through different roles are described: as novel skin penetration enhancers for enhancing transdermal absorption of drugs;as novel solvents for improving the solubility of drugs in carriers;as novel active pharmaceutical ingredients (API-ILs) for regulating skin permeability, solubility, release, and pharmacokinetic behaviors of drugs;and as novel polymers for the development of smart medical materials. Moreover, diverse action mechanisms, mainly including the interactions among ILs, drugs, polymers, and skin components, are summarized. Finally, future challenges related to ILs are discussed, including underlying quantitative structure-activity relationships, complex interaction forces between anions, drugs, polymers and skin microenvironment, long-term stability, and in vivo safety issues. In summary, this article will promote the development of TDDS based on ILs. 展开更多
关键词 transdermal drug delivery system Ionic liquid Quantitative structure-activity relationship Intermolecular interaction
下载PDF
Advances in Transdermal Drug Delivery for Cancer Therapy
3
作者 Ziye Lin Ming Kong 《Journal of Clinical and Nursing Research》 2024年第8期175-182,共8页
Transdermal drug delivery offers a promising alternative to traditional cancer therapies by providing a non-invasive,controlled,and targeted delivery of therapeutic agents.This paper explores the advancements,benefits... Transdermal drug delivery offers a promising alternative to traditional cancer therapies by providing a non-invasive,controlled,and targeted delivery of therapeutic agents.This paper explores the advancements,benefits,and challenges associated with transdermal drug delivery systems(TDDS)in cancer treatment.It highlights the mechanisms of action,key technologies,and the potential impact on patient outcomes.By examining recent studies and clinical trials,this paper aims to provide a comprehensive overview of the efficacy,safety,and prospects of transdermal drug delivery in oncology. 展开更多
关键词 transdermal drug delivery Cancer therapy CHEMOTHERAPY
下载PDF
Characteristics and Transdermal Drug Delivery of Triamcinolone-Acetonide-Acetate-Loaded Solid Lipid Nanoparticles Carbomer Gel 被引量:3
4
作者 刘卫 朱姚亮 +1 位作者 陈华兵 杨祥良 《Journal of Chinese Pharmaceutical Sciences》 CAS 2005年第1期18-24,共7页
Aim To prepare triamcinolone-acetonide-acetate (TAA)-loaded solid lipidnanoparticles (SLN) carbomer gel with tripalmitin glyceride (TPG), and investigate theircharacteristics and transdermal drug delivery. Methods SLN... Aim To prepare triamcinolone-acetonide-acetate (TAA)-loaded solid lipidnanoparticles (SLN) carbomer gel with tripalmitin glyceride (TPG), and investigate theircharacteristics and transdermal drug delivery. Methods SLN suspension was prepared by high-pressurehomogenization technique, and then mixed with carbomer gel matrix to get SLN gel. The morphology,particle size with polydispersi-ty index (PI) and zeta potential were examined by atomic forcemicroscopy (AFM) and photon correlation spectroscopy (PCS). The entrapment efficiency, stability andin vitro drug release were also studied. The transdermal drug delivery through porcine ear skin wasevaluated using modified Franz diffusion cells. Results The SLN had a spherical shape with theaverage size of (95.5 - 186.2) nm, the zeta potential of (-26.3- -15.7) mV and the entrapmentefficiency of 67.4%-90.3% for different TAA encapsulated compounds. TAA-SLN carbomer gel had goodstability, the release profile in vitro fitted Higuchi equation. In comparison with conventionalhydrogels, TAA-SLN carbomer gel resulted in higher drug permeation amount and drug deposition withinporcine ear skin after 24 h penetration experiment. Conclusion TAA-SLN carbomer gel is preparedwith stable physicochemical properties. The release profile and improved drug permeation into skinmake it be a promising vehicle for transdermal drug delivery. 展开更多
关键词 solid lipid nanoparticles carbomer gel triarnconolone-acetonide-acetate characterization transdermal drug delivery
下载PDF
Influence of Electric Field Direction on Enhanced Transdermal Delivery of Caffeine by Electroporation
5
作者 胡巧红 许东航 《Journal of Chinese Pharmaceutical Sciences》 CAS 2006年第2期76-82,共7页
Aim To study the influence of electric field direction on the in vitro enhanced transdermal delivery of caffeine by eleetroporation. Methods Using side-by-side compartment diffusion cells method and Ag-Ag/AgCl electro... Aim To study the influence of electric field direction on the in vitro enhanced transdermal delivery of caffeine by eleetroporation. Methods Using side-by-side compartment diffusion cells method and Ag-Ag/AgCl electrodes, the transport of caffeine through human cadaver skin by electroporation (exponentially decaying pulse, pulse voltage = 350 V, pulse frequency = 4 pulses· min^-1, capacity = 22 μF, pulse length = 7 ms, 25 pulses) with different electric field directions was carried out and compared with passive diffusion and iontophoresis (0.25 mA·cm^ - 2, lasted for 4 h). Results (i) The cumulative quantity and flux of caffeine through human skin were increased significantly by eleetroporation or iontophoresis. (ii) The transport of caffeine by positive iontophoresis ( with electric field from donor to receptor compartment) was significantly greater than that by negative iontophoresis (with electric field from receptor to donor compartment). (iii) The transport of caffeine by positive eleetroporation (with electric field from donor to receptor compartment) was similar to that by negative eleetroporation (with electric field from receptor to donor compartment). (iv) The enhancing effect of positive iontophoresis on the transdermal delivery of caffeine was significantly greater than that of electroporation (positive or negative). Conclusion Electric field direction significantly influences the enhancing effect of iontophoresis on the transdermal delivery of caffeine, but does not influence the enhancing effect of eleetroporation. 展开更多
关键词 eleetroporation electric field direction transdermal delivery CAFFEINE
下载PDF
Preparation of liposomal fluconazole gel and in vitro transdermal delivery 被引量:2
6
作者 赵珊珊 杜青 曹德英 《Journal of Chinese Pharmaceutical Sciences》 CAS 2007年第2期116-118,共3页
Aim Liposomal fluconazole gel was prepared and its properties were studied. Methods The fluconazole liposomes were prepared by film dispersion method. Their shapes and sizes were observed by transmission electronic mi... Aim Liposomal fluconazole gel was prepared and its properties were studied. Methods The fluconazole liposomes were prepared by film dispersion method. Their shapes and sizes were observed by transmission electronic microscope and particle size analyzer, respectively. The skin permeation of liposomal gel was studied on rat skin by permeation cell. Results The entrapment efficiency of flueonazole liposomes was 47.68%. The fluconazole liposomes were oval or round in shape, and their average diameter was 250 ± 8 nm. The accumulative skin permeation of liposomal fluconazole gel (25.27%) was lower than that of non-liposomal fluconazole gel (36.72%), but fluconazole retained in rat skin of liposomal gel (162 ± 15 μg·cm^-2) was higher than that of nonliposomal gel (48 ± 6μg·cm^-2). Conclusion Liposomal fluconazole gel can significantly increase the deposited amounts of fluconazole in rat skin and it may be beneficial for topical use. 展开更多
关键词 FLUCONAZOLE Liposomal gel transdermal delivery in vitro
下载PDF
Transdermal drug delivery systems in diabetes management: A review 被引量:11
7
作者 Li Ching Ng Manish Gupta 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2020年第1期13-25,共13页
Diabetes mellitus is a chronic disease in which there is an insufficient production of insulin by the pancreas, or the insulin produced is unable to be utilized effectively by the body. Diabetes affects more than 415 ... Diabetes mellitus is a chronic disease in which there is an insufficient production of insulin by the pancreas, or the insulin produced is unable to be utilized effectively by the body. Diabetes affects more than 415 million people globally and is estimated to strike about 642 million people in 2040. The WHO reported that diabetes will become the seventh biggest cause of mortality in 2030. Insulin injection and oral hypoglycemic agents remain the primary treatments in diabetes management. These often present with poor patient compliance. However, over the last decade, transdermal systems in diabetes management have gained increasing attention and emerged as a potential hope in diabetes management owing to the advantages that they offer as compared to invasive injection and oral dosage forms. This review presents the recent advances and developments in transdermal research to achieve better diabetes management. Different technologies and approaches have been explored and applied to the transdermal systems to optimize diabetes management. Studies have shown that these transdermal systems demonstrate higher bioavailability compared to oral administration due to the avoidance of first-pass hepatic metabolism and a sustained drug release pattern. Besides that, transdermal systems have the advantage of reducing dosing frequency as drugs are released at a predetermined rate and control blood glucose level over a prolonged time, contributing to better patient compliance. In summary, the transdermal system is a field worth exploring due to its significant advantages over oral route in administration of antidiabetic drugs and biosensing of blood glucose level to ensure better clinical outcomes in diabetes management. 展开更多
关键词 transdermal DIABETES ANTIDIABETIC INSULIN DRUG delivery system
下载PDF
Physicochemical Properties and Evaluation of Microemulsion Systems for Transdermal Delivery of Meloxicam 被引量:6
8
作者 YUAN Yue LI San-ruing +2 位作者 YU Li-min DENG Pan ZHONG Da-fang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第1期81-86,共6页
Microemulsion systems, composed of water, isopropyl myristate (IPM), polyoxyethylene sorbitan trioleate (Tween 85 ), and ethanol, were investigated as transdermal drug delivery vehicles for a lipophilic model drug... Microemulsion systems, composed of water, isopropyl myristate (IPM), polyoxyethylene sorbitan trioleate (Tween 85 ), and ethanol, were investigated as transdermal drug delivery vehicles for a lipophilic model drug( meloxicam). The purpose of this study was to investigate the physicochemieal properties of the tested microemulsion and to find the correlation between the physicoehemical properties and the skin permeation rate of the microemulsion. Pseudo-ternary phase diagram of the investigated system at a constant surfactant/cosurfactant mass ratio ( Km = 1 : 1 ) was constructed by titration at 20℃, and the five fommlations were selected for further research in the o/w microemulsion domains. The values of electrical conductivity and viscosity showed that the selected systems were bicontinuous or non-spherical o/w microemulsion, and the electrical conductivity and viscosity were increased with increasing the content of water. These results suggest that the optimum formulation of microemulsion, containing 0. 375 meloxicam, 5% isopropyl myristate, 25% Tween 85. 25% ethanol, and water, showed the maximum permeation rate. It had a high electrical conductivity, small droplet size, and proper viscocity. 展开更多
关键词 MICROEMULSION Physicochemical property transdermal delivery MELOXICAM Polyoxyethylene sorbitan triolcate
下载PDF
Enhanced transdermal delivery of meloxicam by nanocrystals: Preparation, in vitro and in vivo evaluation 被引量:4
9
作者 Qina Yu Xiying Wu +4 位作者 Quangang Zhu Wei Wu Zhongjian Chen Ye Li Yi Lu 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2018年第6期518-526,共9页
Meloxicam(MLX) is efficient in relieving pain and inflammatory symptoms, which, however, is limited by the poor solubility and gastrointestinal side effects. The objective of this study is to develop a nanocrystal for... Meloxicam(MLX) is efficient in relieving pain and inflammatory symptoms, which, however, is limited by the poor solubility and gastrointestinal side effects. The objective of this study is to develop a nanocrystal formulation to enhance transdermal delivery of MLX. MLX nanocrystals were successfully prepared by the nanoprecipitation technique based on acidbase neutralization. With poloxamer 407 and Tween 80(80/20, w/w) as mixed stabilizers,MLX nanocrystals with particle size of 175 nm were obtained. The crystalline structure of MLX nanocrystals was confirmed by both differential scanning calorimetry and X-ray powder diffractometry. However, the nanoprecipitation process reduced the crystallinity of MLX.Nanocrystals increased both in vitro and in vivo transdermal permeation of MLX compared with the solution and suspension counterparts. Due to the enhanced apparent solubility and dissolution as well as the facilitated hair follicular penetration, nanocrystals present a high and prolonged plasma MLX concentration. And 2.58-and 4.4-fold increase in AUC0 →2 4 h was achieved by nanocrystals comparing with solution and suspension, respectively. In conclusion, nanocrystal is advantageous for transdermal delivery of MLX. 展开更多
关键词 MELOXICAM NANOCRYSTALS transdermal delivery NANOPRECIPITATION ACID-BASE NEUTRALIZATION
下载PDF
Fabrication of gelatin methacryloyl hydrogel microneedles for transdermal delivery of metformin in diabetic rats 被引量:8
10
作者 Zhiyong Zeng Guohua Jiang +6 位作者 Tianqi Liu Gao Song Yanfang Sun Xueya Zhang Yanting Jing Mingjia Feng Yufei Shi 《Bio-Design and Manufacturing》 SCIE EI CSCD 2021年第4期902-911,共10页
Injection therapy for diabetes has poor patient compliance,and the pain occurring at the site of subcutaneous injections causes significant inconvenience to diabetic patients.In this work,to demonstrate the benefits o... Injection therapy for diabetes has poor patient compliance,and the pain occurring at the site of subcutaneous injections causes significant inconvenience to diabetic patients.In this work,to demonstrate the benefits of an alternative drug delivery technique that overcomes these issues,methacrylated gelatin hydrogel-forming microneedles integrated with metformin were developed to adjust blood glucose levels in diabetic rats.Gelatin methacryloyl microneedles(GelMA-MNs)with different degrees of substitution were successfully prepared by a micro-molding method.The resultant GelMA-MNs exhibited excellent mechanical properties and moisture resistance.Metformin,an anti-diabetic drug,was further encapsulated into the GelMA-MNs,and its release rate could be controlled by the three-dimensional cross-linked network of microneedles,thereby exhibiting sustained drug release behaviors in vitro and implying a better therapeutic effect compared with that of subcutaneous injection in diabetic rats.The drug release period could be significantly prolonged by improving the cross-link density of GelMA-MNs.The results of hypoglycemic effect evaluation show that the application of GelMA-MNs for transdermal delivery in diabetic rats has promising benefits for diabetes treatment. 展开更多
关键词 MICRONEEDLES METFORMIN transdermal delivery BIODEGRADABLE GELATIN Hypoglycemic effect
下载PDF
Investigation of Microemulsion System for Transdermal Drug Delivery of Amphotericin B 被引量:2
11
作者 TIAN Qing-ping LI Peng XIE Ke-chang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2009年第1期86-94,共9页
In order to solve the drawback of poor bioavailability by the oral route and infusion-related side effect for Amphotericin B(AmB), microemulsion vehicles composed of isopropyl myristate(IPM), Tween 80, isopropyl a... In order to solve the drawback of poor bioavailability by the oral route and infusion-related side effect for Amphotericin B(AmB), microemulsion vehicles composed of isopropyl myristate(IPM), Tween 80, isopropyl alcohol and water for transdermal delivery of AraB were designed. The pseudo-ternary phase diagrams were constructed by the H2O titration method and the structures of the microemulsion were determined by measuring electrical conductivities(σ). The diffusion studies of AmB microemulsion were performed via excised rabbit skin on a drug diffusion apparatus. To obtain a high solubization of AmB, three different methods were tested to incorporate AmB into microemulsion. The result suggests adding AmB in the shape of NaOH solution to the O/W blank microemulsion over the phase inversion temperature(PIT) of the emulsifier obtains the maximum drug content(2.96 mg/mL). The pH value of the system could be adjusted to pH〉8.5 or pH〈5.2, in this range AraB molecules converts from aqueous to the hydrophilic shell of the microemulsion droplets, drug precipitate is no more than 5%, and the formulations were corresponding to the characterizations of microemulsion. At pH 5.14, AmB microemulsion with Km 1:1, O/SC 1:9(mass ratio of oil phase to surfactant/cosurfactant blend), water content 64.6%, drug content (2.93±0.08) mg/mL, showed the maximum permeation rate (3.255 ±0.64) μg·cm^-2.h^-1 which is stable for a long time. 展开更多
关键词 MICROEMULSION transdermal drug delivery Amphotericin B PH
下载PDF
Ultrasound-mediated transdermal drug delivery of fluorescent nanoparticles and hyaluronic acid into porcine skin in vitro 被引量:2
12
作者 王焕磊 范鹏飞 +3 位作者 郭霞生 屠娟 马勇 章东 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第12期98-105,共8页
Transdermal drug delivery (TDD) can effectively bypass the first-pass effect. In this paper, ultrasound-facilitated TDD on fresh porcine skin was studied under various acoustic parameters, including frequency, ampli... Transdermal drug delivery (TDD) can effectively bypass the first-pass effect. In this paper, ultrasound-facilitated TDD on fresh porcine skin was studied under various acoustic parameters, including frequency, amplitude, and exposure time. The delivery of yellow-green fluorescent nanoparticles and high molecular weight hyaluronic acid (HA) in the skin samples was observed by laser confocal microscopy and ultraviolet spectrometry, respectively. The results showed that, with the application of ultrasound exposures, the permeability of the skin to these markers (e.g., their penetration depth and concentration) could be raised above its passive diffusion permeability. Moreover, ultrasound-facilitated TDD was also tested with/without the presence of ultrasound contrast agents (UCAs). When the ultrasound was applied without UCAs, low ultrasound frequency will give a better drug delivery effect than high frequency, but the penetration depth was less likely to exceed 200 p.m. However, with the help of the ultrasound-induced microbubble cavitation effect, both the penetration depth and concentration in the skin were significantly enhanced even more. The best ultrasound-facilitated TDD could be achieved with a drug penetration depth of over 600 p.m, and the penetration concentrations of fluorescent nanoparticles and HA increased up to about 4-5 folds. In order to get better understanding of ultrasound-facilitated TDD, scanning electron microscopy was used to examine the surface morphology of skin samples, which showed that the skin structure changed greatly under the treatment of ultrasound and UCA. The present work suggests that, for TDD applications (e.g., nanoparticle drug carriers, transdermal patches and cosmetics), protocols and methods presented in this paper are potentially useful. 展开更多
关键词 transdermal delivery of drugs ultrasound contrast agents pulsed ultrasound cavitation effect
下载PDF
Ginger oil-loaded transdermal adhesive patch treats post-traumatic stress disorder
13
作者 Xingshuang Song Yizhi Zhang +7 位作者 Ziyan Tang Jing Dai Yanping Wu Guiyu Huang Hong Niu Yaxin Wang Xu Jin Lina Du 《Journal of Traditional Chinese Medical Sciences》 CAS 2024年第3期316-329,共14页
Objective:To find a viable alternative to reduce the number of doses required for the patients with post-traumatic stress disorder(PTSD),and to improve efficacy and patient compliance.Methods: In this study,we used gi... Objective:To find a viable alternative to reduce the number of doses required for the patients with post-traumatic stress disorder(PTSD),and to improve efficacy and patient compliance.Methods: In this study,we used ginger oil,a phytochemical with potential therapeutic properties,to prepare ginger oil patches.High-performance liquid chromatography(HPLC)was used to quantify the main active component of ginger oil,6-gingerol.Transdermal absorption experiments were conducted to optimize the various pressure-sensitive adhesives and permeation enhancers,including their type and concentration.Subsequently,the ginger oil patches were optimized and subjected to content determination and property evaluations.A PTSD mouse model was established using the foot-shock method.The therapeutic effect of ginger oil patches on PTSD was assessed through pathological sections,behavioral tests,and the evaluation of biomarkers such as tumor necrosis factor-α(TNF-α),interleukin-6(IL-6),brain-derived neurotrophic factor(BDNF),and melatonin(MT).Results: The results demonstrated that ginger oil patches exerted therapeutic effects against PTSD by inhibiting inflammatory responses and modulating MT and BDNF levels.Pharmacokinetic experiments revealed that ginger oil patches maintained a stable blood drug concentration for at least one day,addressing the rapid metabolism drawback of 6-gingerol and enhancing its therapeutic efficacy.Conclusions: Ginger oil can be prepared as a transdermal drug patch that meets these requirements,and the bioavailability of the prepared patch is better than that of oral administration.It can improve PTSD with good patient compliance and ease of administration.Therefore,it is a promising therapeutic formulation for the treatment of PTSD. 展开更多
关键词 Post-traumatic stress disorder 6-GINGEROL Pressure sensitive adhesive patch transdermal delivery
下载PDF
Evaluation of blank film forming polymeric dispersions based on Eudragit RL 30D and RS30D for transdermal drug delivery 被引量:1
14
作者 Chaowalit Monton Jirapornchai Suksaeree 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2016年第1期100-101,共2页
The first approved transdermal drug delivery system in the United States in 1979 is a scopolamine patch for treatment of motion sickness. Transdermal drug delivery system has many advantages over oral route such as it... The first approved transdermal drug delivery system in the United States in 1979 is a scopolamine patch for treatment of motion sickness. Transdermal drug delivery system has many advantages over oral route such as it is useful for vomiting and unconscious patients. It can avoid first pass metabolism by the liver. It is non-invasive way and self-administered system compared to injections. The film forming polymeric solutions are a novel transdermal drug delivery system. This system consists of an active drug, film forming polymer, plasticizer. 展开更多
关键词 Film forming POLYMERIC DISPERSIONS EUDRAGIT transdermal DRUG delivery
下载PDF
Transdermal Drug Delivery by Electroporation: The Effects of Surfactants on Pathway Lifetime and Drug Transport 被引量:1
15
作者 蒋国强 朱德权 +1 位作者 昝佳 丁富新 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第3期397-402,共6页
Electroporation creates aqueous pathways by short high-voltage pulses resulting in a transient perme- abilization of stratum corneum and an increase in the transdermal delivery rate.However the aqueous pathways will r... Electroporation creates aqueous pathways by short high-voltage pulses resulting in a transient perme- abilization of stratum corneum and an increase in the transdermal delivery rate.However the aqueous pathways will reseal after pulsing,which leads to the rapid drop of transdermal flux.In the present study,the surfactants were added to the donor solution to hinder the shrinkage and resealing of the electropore,and to prolong the lifetime of the aqueous pathways with the consideration that the surfactants could reduce the surface energy of the electropore. These effects of surfactants were demonstrated by the dynamic electrical resistance of the skin and the fluorescent imaging of the local transport regions.Piroxicam(PIX)was transported percutaneously in the presence of surfac- tants in vitro.Owing to the longer lifetime of aqueous pathways,together with the promotion of PIX availability at the barrier exterior and the improvement in the partition of PIX into the aqueous pathways,the presence of surfac- tants led to a remarkable increase in the transdermal delivery rate during electroporation and a significant growth of the accumulative transdermal amount of PIX. 展开更多
关键词 transdermal drug delivery skin electroporation SURFACTANT aqueous pathway
下载PDF
Transdermal delivery of fluorescein isothiocyanate-dextrans using the combination of microneedles and low-frequency sonophoresis 被引量:1
16
作者 Boonnada Pamornpathomkul Sureewan Duangjit +3 位作者 Suvida Laohapatarapant Theerasak Rojanarata Praneet Opanasopit Tanasait Ngawhirunpat 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2015年第5期415-424,共10页
This study aimed to evaluate the patient-friendly methods that are used in the delivery of hydrophilic macromolecules into deep skin layers,in particular,the combination of microneedles patch(MNs patch)and low-frequen... This study aimed to evaluate the patient-friendly methods that are used in the delivery of hydrophilic macromolecules into deep skin layers,in particular,the combination of microneedles patch(MNs patch)and low-frequency sonophoresis(SN).The hydrophilic macromolecule drug fluorescein isothiocyanate(FITC)-dextrans(FD-4:MW 4.4 kDa)was used as the model drug in our experimental design.In this study,excised porcine skin was used to investigate and optimize the key parameters that determine effective MNs-and SNfacilitated FD-4 delivery.In vitro skin permeation experiments revealed that the combination of MNs patch with SN had a superior enhancing effect of skin permeation for FD-4 compared to MNs alone,SN alone or untreated skin,respectively.The optimal parameters for the combination of MNs and SN included the following:10 N insertion force of MNs,4 W/cm^(2)SN intensity,6 mm radiation diameter of the SN probe,2 min application time,and the continuous mode duty cycle of SN.In addition,vertical sections of skin,clearly observed under a confocal microscope,confirmed that the combination of MNs and SN enhanced permeation of FD-4 into the deep skin layers.These studies suggest that the combination of MNs and SN techniques could have great potential in the delivery of hydrophilic macromolecules into deep skin. 展开更多
关键词 MICRONEEDLE SONOPHORESIS Fluorescein isothiocyanate-dextran transdermal drug delivery
下载PDF
Design and Transdermal Delivery of Indomethacin Nanosystem 被引量:1
17
作者 Catarina Pinto Reis Felipe de Freitas Nunes +1 位作者 Catarina Rosado LuisMonteiro Rodrigues 《材料科学与工程(中英文A版)》 2011年第4X期531-537,共7页
关键词 吲哚美辛 透皮给药 纳米系统 纳米粒子 设计 ZETA电位 ZETA电位 平均粒径
下载PDF
Asiatic acid-pectin hydrogel matrix patch transdermal delivery system influences parasitaemia suppression and inflammation reduction in P. berghei murine malaria infected Sprague-Dawley rats
18
作者 Greanious Alfred Alfrd Mavondo Musabayane Cephas Tagumirwa 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2016年第12期1148-1156,共9页
Objective: To report the influence of transdermal delivery of asiatic acid(AA) in Plasmodium berghei-infected Sprague Dawley rats on physicochemical changes, %parasitaemia and associated pathophysiology. Methods: A to... Objective: To report the influence of transdermal delivery of asiatic acid(AA) in Plasmodium berghei-infected Sprague Dawley rats on physicochemical changes, %parasitaemia and associated pathophysiology. Methods: A topical once-off AA(5, 10, and 20 mg/kg)- or chloroquine(CHQ)-pectin patch was applied on the shaven dorsal neck region of Plasmodium berghei-infected Sprague Dawley rats(90-120 g) on day 7 after infection. Eating and drinking habits, weight changes, malaria effects and %parasitaemia were compared among animal groups over 21 d. Results: AA-pectin patch application preserved food and water intake together with %weight gain. All animals developed stable parasitaemia(15%-20%) by day 7. AA doses suppressed parasitaemia significantly. AA 5 mg/kg patch was most effective. AA and CHQ displayed bimodal time-spaced peaks. CHQ patch had a longer time course to clear parasitaemia. Conclusions: AA influences bio-physicochemical changes and parasitaemia suppression in dose dependent manner. In comparison by dose administered, AA has much better efficacy than CHQ. AA may be a useful antimalarial. AA and CHQ displays bimodal peaks suggesting possible synergism if used in combination therapy. 展开更多
关键词 Asiatic acid Malaria parasitaemia Plasmodium berghei transdermal delivery system PATCH Malaria inflammation
下载PDF
Characteristics and pharmacokinetics of tripterygium glycosides nano-carries transdermal delivery systems:skin-blood synchronous microdialysis and numerical simulation
19
作者 LIU Ji-yong YANG Meng +2 位作者 GU Yong-wei YANG Di-shun LIU Shan-shan 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2016年第10期1047-1047,共1页
The traditional Chinese medicine tripterygium glycosides(TPG)is used clinically to treat some Rheumatism,Eczema,immunosuppression and tumor,with the activities of hypnosis,antipyretic,analgesic,antiinflammatory,allerg... The traditional Chinese medicine tripterygium glycosides(TPG)is used clinically to treat some Rheumatism,Eczema,immunosuppression and tumor,with the activities of hypnosis,antipyretic,analgesic,antiinflammatory,allergy and antitumor.However TPG has low water solubility and low skin permeability,so its clinical use is limited.Transdermal delivery systems can provide a controlled drug release rate that can keep constant concentrations of drug in the plasma for up to multiple days,improved patient compliance,and the possibility ofreducing the rate and severity of side effects.In this study,a fast and sensitive technique skin-blood two sites synchronous microdialysis coupled with LC-MS was used to study the pharmacokinetic parameter of three different formulations(TPG nanoemulsion,TPG nanoemulsion based gels and TPG gel).Creating a multilayer model,use the model to simulate the three formulations dynamics in transdermal-drug delivery system.The experiment results showed that the TPG nanoemulsion,TPG nanoemulsion based gels can significantly raise the drug concentrations in skin more than that of TPG gels.The numerical simulation results indicating that TPG gel and TPG nanoemulsion are close to practical measurements,only in the concentration increase phase the numerical simulation result has some difference with the experimental results.TPG nanoemulsion based gels have significant difference with the experimental results,both in concentration increase stage and concentration decreasing stage,but its trend was same.The study shows that the skin-blood synchronous microdialysis technique provided a new method for the pharmacokinetics study of nanocarriers transdermal delivery systems.In addition,the microdialysis technique combined with mathematical modeling provides a very good platform for the further study of transdermal delivery system. 展开更多
关键词 tripterygium glycosides transdermal drug delivery nano-carriers MICRODIALYSIS numerical simulation
下载PDF
Ethosomes-Silk Fibroin/Polyvinyl Alcohol Composite Hydrogel Transdermal Drug Delivery System : Preparation and Characterization
20
作者 杨兴兴 余凡 +4 位作者 马琳琳 骆格杰 潘潇涵 林思 王红声 《Journal of Donghua University(English Edition)》 EI CAS 2017年第1期99-104,共6页
One key of constructing ideal transdermal drug delivery system(TDDS)is enhancing the percutaneous rate of drugs without sacrificing compatibility.Ethosomes(Eths)have excellent transdermal performance as well as good b... One key of constructing ideal transdermal drug delivery system(TDDS)is enhancing the percutaneous rate of drugs without sacrificing compatibility.Ethosomes(Eths)have excellent transdermal performance as well as good biocompatibility,and thus been widely used as drug carrier.Hydrogel has good 3-dimensional mesh structure which is convenience for drugs release and storage.In this study,Eths were introduced into silk fibroin(SF)/polyvinyl alcohol(PVA)composite hydrogel to construct a novel TDDS through a green process.The Ethsomes(Eths)-SF/PVA composite hydrogel TDDS showed good mechanical properties(stress:(0.236±0.032)MPa;strain:(65.74±2.45)%).Also,skin fibroblasts can grow and proliferate well on this TDDS,indicating that this material has a good cytocompatibility.Furthermore,with doxorubicin hydrochloride(Dox)as a model drug loaded in ethosomes,in vitro studies showed that this TDDS was able to transdermally release Dox efficiently.Our data suggested this novel system had a good potential for application in TDD,though further evaluative study still needed to carry out. 展开更多
关键词 transdermal drug delivery system Ethosomes(Eths) silk fibroin HYDROGEL polyvinyl alcohol
下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部