AIM:To evaluate the effect of RNA interference (RNAi) mediated silence of signal transduction and activation of transcription (STAT)3 on the growth of human pancreatic cancer cells both in vitro and in vivo.METHODS:ST...AIM:To evaluate the effect of RNA interference (RNAi) mediated silence of signal transduction and activation of transcription (STAT)3 on the growth of human pancreatic cancer cells both in vitro and in vivo.METHODS:STAT3 specific shRNA was used to silence the expression of STAT3 in pancreatic cancer cell line SW1990.The anti-growth effects of RNAi against STAT3 were studied in vitro and in experimental cancer xenografts in nude mice.The potential pathways involved in STAT3 signaling were detected using reverse transcription polymerase chain reaction and western blotting.RESULTS:The expression of the STAT3 was inhibited using RNAi in SW1990 cells.RNAi against STAT3 inhibited cell proliferation,induced cell apoptosis and significantly reduced the levels of CyclinD1 and Bcl-xL when compared with parental and control vector-transfected cells.In vivo experiments showed that RNAi against STAT3 inhibited the tumorigenicity of SW1990 cells and significantly suppressed tumor growth when it was directly injected into tumors.CONCLUSION:STAT3 signaling pathway plays an important role in the progression of pancreatic cancer,and silence of STAT3 gene using RNAi technique may be a novel therapeutic option for treatment of pancreatic cancer.展开更多
Chronic hepatitis due to any cause leads to cirrhosis and end-stage liver disease.A growing body of literature has also shown that fatty liver due to overweight or obesity is a leading cause of cirrhosis.Due to the ob...Chronic hepatitis due to any cause leads to cirrhosis and end-stage liver disease.A growing body of literature has also shown that fatty liver due to overweight or obesity is a leading cause of cirrhosis.Due to the obesity epidemic,fatty liver is now a significant problem in clinical practice.Steatosis has an impact on the acceleration of liver damage in patients with chronic hepatitis due to other causes.An association between hepatitis C virus (HCV) infection,steatosis and the onset of insulin resistance has been reported.Insulin resistance is one of the leading factors for severe fibrosis in chronic HCV infections.Moreover,hyperinsulinemia has a deleterious effect on the management of chronic HCV.Response to therapy is increased by decreasing insulin resistance by weight loss or the use of thiazolidenediones or metformin.The underlying mechanisms of this complex interaction are not fully understood.A direct cytopathic effect of HCV has been suggested.The genomic structure of HCV (suggesting that some viral sequences are involved in the intracellular accumulation of triglycerides),lipid metabolism,the molecular links between the HCV core protein and lipid droplets (the core protein of HCV and its transcriptional regulatory function which induce a triglyceride accumulation in hepatocytes) and increased neolipogenesis and inhibited fatty acid degradation in mitochondria have been investigated.展开更多
The mammalian target of rapamycin (mTOR) pathway plays an important role in neuronal growth, proliferation and differentiation. To better understand the role of mTOR pathway involved in the induction of spinal cord ...The mammalian target of rapamycin (mTOR) pathway plays an important role in neuronal growth, proliferation and differentiation. To better understand the role of mTOR pathway involved in the induction of spinal cord injury, rat models of spinal cord injury were established by modified Allen's stall method and interfered for 7 days by intraperitoneal administration of mTOR activator adenosine triphosphate and mTOR kinase inhibitor rapamycin. At 1-4 weeks after spinal cord injury induction, the Basso, Beattie and Bresnahan locomotor rating scale was used to evaluate rat locomotor function, and immunohistochemical staining and western blot analysis were used to detect the expression of nestin (neural stem cell marker), neuronal nuclei (neuronal marker), neuron specific enolase, neurofilament protein 200 (axonal marker), glial fibrillary acidic protein (astrocyte marker), Akt, mTOR and signal transduction and activator of transcription 3 (STAT3). Results showed that adenosine triphosphate-mediated Akt/mTOR/STAT3 pathway increased endogenous neural stem cells, induced neurogenesis and axonal growth, inhibited excessive astrogliosis and improved the locomotor function of rats with spinal cord injury.展开更多
The protein tyrosine phosphatase 1B(PTP1B)is an important regulator of metabolism.The relationship between PTP1B and tumors is quite complex.The purpose of this study is to explore the expression pattern and role of...The protein tyrosine phosphatase 1B(PTP1B)is an important regulator of metabolism.The relationship between PTP1B and tumors is quite complex.The purpose of this study is to explore the expression pattern and role of PTP1B in breast cancer.The expression of PTP1B was detected in 67 samples of breast cancer tissue by Western blot.Cell growth assay,Transwell migration assay,and Scratch motility assay were used to examine the proliferation and migration of MCF-7 with and without PTP1B.The total levels and phosphorylated levels of signal transduction and activator of transcription 3(STAT3)and the expression of C-C motif chemokine ligand 5(CCL5)were also examined by Western blot.PTP1B was overexpressed in over 70%of breast cancer tissues,correlating with patients with estrogen receptor(ER)-negative,progesterone receptor(PR)-negative,and human epidermal growth factor receptor 2(HER2)-positive tumors.The data also showed that both tumor size and lymph node metastasis were significantly higher in patients with a higher level of PTP1B.The proliferation and migration of MCF-7 cells were found to be inhibited after knocking down the gene of PTP1B.Our data also showed that PTP1B could up-regulate the dephosphorylated level of STAT3,which could increase the expression of CCL5.These phenomena indicated that PTP1B may play a crucial role in the development of breast cancer.展开更多
Background Complement receptor type 2 (CR2) is the receptor for C3d and C3dg and for Epstein Barr virus The aim of our study was to explore whether CR2 can independently mediate the activation of mitogen activated pro...Background Complement receptor type 2 (CR2) is the receptor for C3d and C3dg and for Epstein Barr virus The aim of our study was to explore whether CR2 can independently mediate the activation of mitogen activated protein kinases (MAPKs, including ERK, JNK, and p38MAPK), and to highlight the molecular mechanism of CD 4 + cell deletion in AIDS Methods HOS cells (HOS CR2) and HOS CD4 cells (HOS CD4CR2) stably expressing CR2 were established and then identified by FACS and Western blotting Activation and blocking tests of MAPKs were assessed by Western blot Cell proliferation was determined using Cell Titer 96 Aqueous One Solution Reagent Results FACS results showed that the positive rates of HOS CR2 and HOS CD4CR2 cells were greater than 96%, and Western blot showed that the CR2 expression levels on HOS CR2 and HOS CD4CR2 cells were high Activation and blocking tests of MAPKs (ERK, JNK, and p38MAPK) were carried out in HOS CR2, HOS CD4, and HOS CD4CR2 cells The activation of MAPKs in HOS CR2 cells stimulated with PMA (100 ng/ml) and NHS (10%) was identical The activation of MAPKs increased at 5 minutes, reached a peak at 10 minutes, and decreased to baseline within 30 minutes, all in a time dependent manner; the activation of MAPKs was blocked by anti CR2 McAb, PD98059 (inhibitor of ERK), and Wortmanin (inhibitor of PI 3K), respectively In HOS CD4 cells, MAPKs were activated by HIV gp160 In HOS CD4CR2 cells, MAPK activation was induced by HIV gp160, 10% NHS, and HIV gp160+10%NHS; phosphorylation of p38MAPK was dramatically induced by HIV gp160+NHS, and lasted for 1 hour The cell proliferation results showed that HIV gp160 inhibited the proliferation of HOS CD4 and HOS CD4CR2 cells ( P <0 01) and that NHS enhanced the effect of HIV gp160 ( P <0 01) Conclusions The activation of MAPKs is independently mediated by CR2 and that anti CR2 McAb, PD98059, and Wortmanin block the activation of MAPKs, respectively The results of the signal transduction and cell proliferation assays of HOS CD4CR2 cells show that CR2 plays a role in the pathogenesis of HIV infection, especially in the inhibition of CD 4 + cell proliferation展开更多
Very few selected species of primates are known to be capable of entering torpor. This exciting discovery means that the ability to enter a natural state of dormancy is an ancestral trait among primates and, in phylog...Very few selected species of primates are known to be capable of entering torpor. This exciting discovery means that the ability to enter a natural state of dormancy is an ancestral trait among primates and, in phylogenetic terms, is very close to the human lineage. To explore the regulatory mechanisms that underlie primate torpor, we analyzed signal transduction cascades to discover those involved in coordinating tissue responses during torpor. The responses of mitogen-activated protein kinase(MAPK) family members to primate torpor were compared in six organs of control(aroused) versus torpid gray mouse lemurs, Microcebus murinus. The proteins examined include extracellular signal-regulated kinases(ERKs), c-jun NH2-terminal kinases(JNKs), MAPK kinase(MEK), and p38, in addition to stress-related proteins p53 and heat shock protein 27(HSP27). The activation of specific MAPK signal transduction pathways may provide a mechanism to regulate the expression of torpor-responsive genes or the regulation of selected downstream cellular processes. In response to torpor, each MAPK subfamily responded differently during torpor and each showed organ-specific patterns of response. For example, skeletal muscle displayed elevated relative phosphorylation of ERK1/2 during torpor. Interestingly, adipose tissues showed the highest degree of MAPK activation. Brown adipose tissue displayed an activation of ERK1/2 and p38, whereas white adipose tissue showed activation of ERK1/2, p38, MEK, and JNK during torpor. Importantly, both adipose tissues possess specialized functions that are critical for torpor, with brown adipose required for non-shivering thermogenesis and white adipose utilized as the primary source of lipid fuel for torpor. Overall, these data indicate crucial roles of MAPKs in the regulation of primate organs during torpor.展开更多
基金Supported by A Grant from the Science and Technology Commission of Shanghai Municipality,No. 09QA1404600a grant from the Affiliated First People’s Hospital of ShanghaiJiao Tong University,No. 0801
文摘AIM:To evaluate the effect of RNA interference (RNAi) mediated silence of signal transduction and activation of transcription (STAT)3 on the growth of human pancreatic cancer cells both in vitro and in vivo.METHODS:STAT3 specific shRNA was used to silence the expression of STAT3 in pancreatic cancer cell line SW1990.The anti-growth effects of RNAi against STAT3 were studied in vitro and in experimental cancer xenografts in nude mice.The potential pathways involved in STAT3 signaling were detected using reverse transcription polymerase chain reaction and western blotting.RESULTS:The expression of the STAT3 was inhibited using RNAi in SW1990 cells.RNAi against STAT3 inhibited cell proliferation,induced cell apoptosis and significantly reduced the levels of CyclinD1 and Bcl-xL when compared with parental and control vector-transfected cells.In vivo experiments showed that RNAi against STAT3 inhibited the tumorigenicity of SW1990 cells and significantly suppressed tumor growth when it was directly injected into tumors.CONCLUSION:STAT3 signaling pathway plays an important role in the progression of pancreatic cancer,and silence of STAT3 gene using RNAi technique may be a novel therapeutic option for treatment of pancreatic cancer.
文摘Chronic hepatitis due to any cause leads to cirrhosis and end-stage liver disease.A growing body of literature has also shown that fatty liver due to overweight or obesity is a leading cause of cirrhosis.Due to the obesity epidemic,fatty liver is now a significant problem in clinical practice.Steatosis has an impact on the acceleration of liver damage in patients with chronic hepatitis due to other causes.An association between hepatitis C virus (HCV) infection,steatosis and the onset of insulin resistance has been reported.Insulin resistance is one of the leading factors for severe fibrosis in chronic HCV infections.Moreover,hyperinsulinemia has a deleterious effect on the management of chronic HCV.Response to therapy is increased by decreasing insulin resistance by weight loss or the use of thiazolidenediones or metformin.The underlying mechanisms of this complex interaction are not fully understood.A direct cytopathic effect of HCV has been suggested.The genomic structure of HCV (suggesting that some viral sequences are involved in the intracellular accumulation of triglycerides),lipid metabolism,the molecular links between the HCV core protein and lipid droplets (the core protein of HCV and its transcriptional regulatory function which induce a triglyceride accumulation in hepatocytes) and increased neolipogenesis and inhibited fatty acid degradation in mitochondria have been investigated.
文摘The mammalian target of rapamycin (mTOR) pathway plays an important role in neuronal growth, proliferation and differentiation. To better understand the role of mTOR pathway involved in the induction of spinal cord injury, rat models of spinal cord injury were established by modified Allen's stall method and interfered for 7 days by intraperitoneal administration of mTOR activator adenosine triphosphate and mTOR kinase inhibitor rapamycin. At 1-4 weeks after spinal cord injury induction, the Basso, Beattie and Bresnahan locomotor rating scale was used to evaluate rat locomotor function, and immunohistochemical staining and western blot analysis were used to detect the expression of nestin (neural stem cell marker), neuronal nuclei (neuronal marker), neuron specific enolase, neurofilament protein 200 (axonal marker), glial fibrillary acidic protein (astrocyte marker), Akt, mTOR and signal transduction and activator of transcription 3 (STAT3). Results showed that adenosine triphosphate-mediated Akt/mTOR/STAT3 pathway increased endogenous neural stem cells, induced neurogenesis and axonal growth, inhibited excessive astrogliosis and improved the locomotor function of rats with spinal cord injury.
基金supported by the Research Foundation of Public Health Bureau of Hubei Province(No.JX3A14),China
文摘The protein tyrosine phosphatase 1B(PTP1B)is an important regulator of metabolism.The relationship between PTP1B and tumors is quite complex.The purpose of this study is to explore the expression pattern and role of PTP1B in breast cancer.The expression of PTP1B was detected in 67 samples of breast cancer tissue by Western blot.Cell growth assay,Transwell migration assay,and Scratch motility assay were used to examine the proliferation and migration of MCF-7 with and without PTP1B.The total levels and phosphorylated levels of signal transduction and activator of transcription 3(STAT3)and the expression of C-C motif chemokine ligand 5(CCL5)were also examined by Western blot.PTP1B was overexpressed in over 70%of breast cancer tissues,correlating with patients with estrogen receptor(ER)-negative,progesterone receptor(PR)-negative,and human epidermal growth factor receptor 2(HER2)-positive tumors.The data also showed that both tumor size and lymph node metastasis were significantly higher in patients with a higher level of PTP1B.The proliferation and migration of MCF-7 cells were found to be inhibited after knocking down the gene of PTP1B.Our data also showed that PTP1B could up-regulate the dephosphorylated level of STAT3,which could increase the expression of CCL5.These phenomena indicated that PTP1B may play a crucial role in the development of breast cancer.
文摘Background Complement receptor type 2 (CR2) is the receptor for C3d and C3dg and for Epstein Barr virus The aim of our study was to explore whether CR2 can independently mediate the activation of mitogen activated protein kinases (MAPKs, including ERK, JNK, and p38MAPK), and to highlight the molecular mechanism of CD 4 + cell deletion in AIDS Methods HOS cells (HOS CR2) and HOS CD4 cells (HOS CD4CR2) stably expressing CR2 were established and then identified by FACS and Western blotting Activation and blocking tests of MAPKs were assessed by Western blot Cell proliferation was determined using Cell Titer 96 Aqueous One Solution Reagent Results FACS results showed that the positive rates of HOS CR2 and HOS CD4CR2 cells were greater than 96%, and Western blot showed that the CR2 expression levels on HOS CR2 and HOS CD4CR2 cells were high Activation and blocking tests of MAPKs (ERK, JNK, and p38MAPK) were carried out in HOS CR2, HOS CD4, and HOS CD4CR2 cells The activation of MAPKs in HOS CR2 cells stimulated with PMA (100 ng/ml) and NHS (10%) was identical The activation of MAPKs increased at 5 minutes, reached a peak at 10 minutes, and decreased to baseline within 30 minutes, all in a time dependent manner; the activation of MAPKs was blocked by anti CR2 McAb, PD98059 (inhibitor of ERK), and Wortmanin (inhibitor of PI 3K), respectively In HOS CD4 cells, MAPKs were activated by HIV gp160 In HOS CD4CR2 cells, MAPK activation was induced by HIV gp160, 10% NHS, and HIV gp160+10%NHS; phosphorylation of p38MAPK was dramatically induced by HIV gp160+NHS, and lasted for 1 hour The cell proliferation results showed that HIV gp160 inhibited the proliferation of HOS CD4 and HOS CD4CR2 cells ( P <0 01) and that NHS enhanced the effect of HIV gp160 ( P <0 01) Conclusions The activation of MAPKs is independently mediated by CR2 and that anti CR2 McAb, PD98059, and Wortmanin block the activation of MAPKs, respectively The results of the signal transduction and cell proliferation assays of HOS CD4CR2 cells show that CR2 plays a role in the pathogenesis of HIV infection, especially in the inhibition of CD 4 + cell proliferation
基金supported by a Discovery grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada (Grant No. 6793)a grant from the Heart and Stroke Foundation of Canada (Grant No. G-140005874) to KBS. KBS holds the Canada Research Chair in Molecular PhysiologyKKB, CWW, and SNT all held NSERC postgraduate scholarships
文摘Very few selected species of primates are known to be capable of entering torpor. This exciting discovery means that the ability to enter a natural state of dormancy is an ancestral trait among primates and, in phylogenetic terms, is very close to the human lineage. To explore the regulatory mechanisms that underlie primate torpor, we analyzed signal transduction cascades to discover those involved in coordinating tissue responses during torpor. The responses of mitogen-activated protein kinase(MAPK) family members to primate torpor were compared in six organs of control(aroused) versus torpid gray mouse lemurs, Microcebus murinus. The proteins examined include extracellular signal-regulated kinases(ERKs), c-jun NH2-terminal kinases(JNKs), MAPK kinase(MEK), and p38, in addition to stress-related proteins p53 and heat shock protein 27(HSP27). The activation of specific MAPK signal transduction pathways may provide a mechanism to regulate the expression of torpor-responsive genes or the regulation of selected downstream cellular processes. In response to torpor, each MAPK subfamily responded differently during torpor and each showed organ-specific patterns of response. For example, skeletal muscle displayed elevated relative phosphorylation of ERK1/2 during torpor. Interestingly, adipose tissues showed the highest degree of MAPK activation. Brown adipose tissue displayed an activation of ERK1/2 and p38, whereas white adipose tissue showed activation of ERK1/2, p38, MEK, and JNK during torpor. Importantly, both adipose tissues possess specialized functions that are critical for torpor, with brown adipose required for non-shivering thermogenesis and white adipose utilized as the primary source of lipid fuel for torpor. Overall, these data indicate crucial roles of MAPKs in the regulation of primate organs during torpor.