BACKGROUND Alveolar bone defects caused by inflammation are an urgent issue in oral implant surgery that must be solved.Regulating the various phenotypes of macrophages to enhance the inflammatory environment can sign...BACKGROUND Alveolar bone defects caused by inflammation are an urgent issue in oral implant surgery that must be solved.Regulating the various phenotypes of macrophages to enhance the inflammatory environment can significantly affect the progression of diseases and tissue engineering repair process.AIM To assess the influence of interleukin-10(IL-10)on the osteogenic differentiation of bone marrow mesenchymal stem cells(BMSCs)following their interaction with macrophages in an inflammatory environment.METHODS IL-10 modulates the differentiation of peritoneal macrophages in Wistar rats in an inflammatory environment.In this study,we investigated its impact on the proliferation,migration,and osteogenesis of BMSCs.The expression levels of signal transducer and activator of transcription 3(STAT3)and its activated form,phos-phorylated-STAT3,were examined in IL-10-stimulated macrophages.Subsequently,a specific STAT3 signaling inhibitor was used to impede STAT3 signal activation to further investigate the role of STAT3 signaling.RESULTS IL-10-stimulated macrophages underwent polarization to the M2 type through substitution,and these M2 macrophages actively facilitated the osteogenic differentiation of BMSCs.Mechanistically,STAT3 signaling plays a crucial role in the process by which IL-10 influences macrophages.Specifically,IL-10 stimulated the activation of the STAT3 signaling pathway and reduced the macrophage inflammatory response,as evidenced by its diminished impact on the osteogenic differentiation of BMSCs.CONCLUSION Stimulating macrophages with IL-10 proved effective in improving the inflammatory environment and promoting the osteogenic differentiation of BMSCs.The IL-10/STAT3 signaling pathway has emerged as a key regulator in the macrophage-mediated control of BMSCs’osteogenic differentiation.展开更多
One-third of patients with autoimmune hepatitis(AIH)have cirrhosis at the time of diagnosis.The relevance of these variables,although unknown,is believed to be critical in AIH because of suspected interactions between...One-third of patients with autoimmune hepatitis(AIH)have cirrhosis at the time of diagnosis.The relevance of these variables,although unknown,is believed to be critical in AIH because of suspected interactions between the gut microbiome and genetic factors.Dysbiosis of the gut flora and elevated polymeric immunoglobulin receptor(pIgR)levels have been observed in both patients and mouse models.Moreover,there is a direct relationship between pIgR expression and transaminase levels in patients with AIH.In this study,we aimed to explore how pIgR influences the secretion of regenerating islet-derived 3 beta(Reg3b)and the flora composition in AIH using in vivo experiments involving patients with AIH and a concanavalin A-induced mouse model of AIH.Reg3b expression was reduced in pIgR gene(Pigr)-knockout mice compared to that in wild-type mice,leading to increased microbiota disruption.Conversely,exogenous pIgR supplementation increased Reg3b expression and maintained microbiota homeostasis.RNA sequencing revealed the participation of the interleukin(IL)-17 signaling pathway in the regulation of Reg3b through pIgR.Furthermore,the introduction of external pIgR could not restore the imbalance in gut microbiota in AIH,and the decrease in Reg3b expression was not apparent following the inhibition of signal transducer and activator of transcription 3(STAT3).In this study,pIgR facilitated the upregulation of Reg3b via the STAT3 pathway,which plays a crucial role in preserving the balance of the intestinal microbiota in AIH.Through this research,we discovered new molecular targets that can be used for the diagnosis and treatment of AIH.展开更多
Despite standard treatment for non-small cell lung cancer(NSCLC)being surgical resection,cancer recurrence and complications,such as induction of malignant pleural effusion(MPE)and significant postoperative pain,usual...Despite standard treatment for non-small cell lung cancer(NSCLC)being surgical resection,cancer recurrence and complications,such as induction of malignant pleural effusion(MPE)and significant postoperative pain,usually result in treatment failure.In this study,an alginate-based hybrid hydrogel(SOG)is developed that can be injected into the resection surface of the lungs during surgery.Briefly,endoplasmic reticulum-modified liposomes(MSLs)pre-loaded with the signal transducer and activator of transcription 3(STAT3)small interfering RNA and lidocaine hydrochloride are encapsulated in SOG.Once applied,MSLs strongly downregulated STAT3 expression in the tumor microenvironment,resulting in the apoptosis of lung cancer cells and polarization of tumor-associated macrophages towards the M1-like phenotype.Meanwhile,the release of lidocaine hydrochloride(LID)was beneficial for pain relief and natural killer cell activation.Our data demonstrated MSL@LID@SOG not only efficiently inhibited tumor growth but also potently improved the quality of life,including reduced MPE volume and pain relief in orthotopic NSCLC mouse models,even with a single administration.MSL@LID@SOG shows potential for comprehensive clinical management upon tumor resection in NSCLC,and may alter the treatment paradigms for other cancers.展开更多
BACKGROUND Gastric cancer(GC)is one of the most common cancer types worldwide,and its prevention and treatment methods have garnered much attention.As the active ingredient of licorice,18β-glycyrrhetinic acid(18β-GR...BACKGROUND Gastric cancer(GC)is one of the most common cancer types worldwide,and its prevention and treatment methods have garnered much attention.As the active ingredient of licorice,18β-glycyrrhetinic acid(18β-GRA)has a variety of pharmacological effects.The aim of this study was to explore the effective target of 18β-GRA in the treatment of GC,in order to provide effective ideas for the clinical prevention and treatment of GC.AIM To investigate the mechanism of 18β-GRA in inhibiting cell proliferation and promoting autophagy flux in GC cells.METHODS Whole transcriptomic analyses were used to analyze and screen differentially expressed microRNAs(miRNAs)in GC cells after 18β-GRA intervention.Lentivirus-transfected GC cells and the Cell Counting Kit-8 were used to detect cell proliferation ability,cell colony formation ability was detected by the clone formation assay,and flow cytometry was used to detect the cell cycle and apoptosis.A nude mouse transplantation tumor model of GC cells was constructed to verify the effect of miR-328-3p overexpression on the tumorigenicity of GC cells.Tumor tissue morphology was observed by hematoxylin and eosin staining,and microtubule-associated protein light chain 3(LC3)expression was detected by immunohistochemistry.TransmiR,STRING,and miRWalk databases were used to predict the relationship between miR-328-3p and signal transducer and activator of transcription 3(STAT3)-related information.Expression of STAT3 mRNA and miR-328-3p was detected by quantitative polymerase chain reaction(qPCR)and the expression levels of STAT3,phosphorylated STAT3(p-STAT3),and LC3 were detected by western blot analysis.The targeted relationship between miR-328-3p and STAT3 was detected using the dual-luciferase reporter gene system.AGS cells were infected with monomeric red fluorescent protein-green fluorescent protein-LC3 adenovirus double label.LC3 was labeled and autophagy flow was observed under a confocal laser microscope.RESULTS The expression of miR-328-3p was significantly upregulated after 18β-GRA intervention in AGS cells(P=4.51E-06).Overexpression of miR-328-3p inhibited GC cell proliferation and colony formation ability,arrested the cell cycle in the G0/G1 phase,promoted cell apoptosis,and inhibited the growth of subcutaneous tumors in BALB/c nude mice(P<0.01).No obvious necrosis was observed in the tumor tissue in the negative control group(no drug intervention or lentivirus transfection)and vector group(the blank vector for lentivirus transfection),and more cells were loose and necrotic in the miR-328-3p group.Bioinformatics tools predicted that miR-328-3p has a targeting relationship with STAT3,and STAT3 was closely related to autophagy markers such as p62.After overexpressing miR-328-3p,the expression level of STAT3 mRNA was significantly decreased(P<0.01)and p-STAT3 was downregulated(P<0.05).The dual-luciferase reporter gene assay showed that the luciferase activity of miR-328-3p and STAT33’untranslated regions of the wild-type reporter vector group was significantly decreased(P<0.001).Overexpressed miR-328-3p combined with bafilomycin A1(Baf A1)was used to detect the expression of LC3 II.Compared with the vector group,the expression level of LC3 II in the overexpressed miR-328-3p group was downregulated(P<0.05),and compared with the Baf A1 group,the expression level of LC3 II in the overexpressed miR-328-3p+Baf A1 group was upregulated(P<0.01).The expression of LC3 II was detected after intervention of 18β-GRA in GC cells,and the results were consistent with the results of miR-328-3p overexpression(P<0.05).Additional studies showed that 18β-GRA promoted autophagy flow by promoting autophagosome synthesis(P<0.001).qPCR showed that the expression of STAT3 mRNA was downregulated after drug intervention(P<0.05).Western blot analysis showed that the expression levels of STAT3 and p-STAT3 were significantly downregulated after drug intervention(P<0.05).CONCLUSION 18β-GRA promotes the synthesis of autophagosomes and inhibits GC cell proliferation by regulating the miR-328-3p/STAT3 signaling pathway.展开更多
Psoriasis is a chronic autoimmune disease featured by patches on the skin.It is caused by malfunction of immune cells and keratinocytes with inflammation as one of its key features.Apigenin(API)is a natural flavonoid ...Psoriasis is a chronic autoimmune disease featured by patches on the skin.It is caused by malfunction of immune cells and keratinocytes with inflammation as one of its key features.Apigenin(API)is a natural flavonoid with anti-inflammatory and immunoregulatory properties.Therefore,we speculated that API can ameliorate psoriasis,and determined its effect on the development of psoriasis by using imiquimod(IMQ)-induced psoriasis mouse model.Our results showed that API attenuated IMQ-induced phenotypic changes,such as erythema,scaling and epidermal thickening,and improved splenic hyperplasia.Abnormal differentiation of immune cells was restored in API-treated mice.Mechanistically,we revealed that API is a key regulator of signal transducer activator of transcription 3(STAT3).API regulated immune responses by reducing interleukin-23(IL-23)/STAT3/IL-17A axis.Moreover,it suppressed IMQ-caused cell hyperproliferation by inactivating STAT3 through regulation of extracellular signal-regulated kinase 1/2 and nuclear factor-κB(NF-κB)pathway.Furthermore,API reduced expression of inflammatory cytokines through inactivation of NF-κB.Taken together,our study demonstrates that API can ameliorate psoriasis and may be considered as a strategy for psoriasis treatment.展开更多
Background:Galectin 2(LGALS2)is a protein previously reported to serve as a mediator of disease progression in a range of cancers.The function of LGALS2 in oral squamous cell carcinoma(OSCC),however,has yet to be expl...Background:Galectin 2(LGALS2)is a protein previously reported to serve as a mediator of disease progression in a range of cancers.The function of LGALS2 in oral squamous cell carcinoma(OSCC),however,has yet to be explored,prompting the present study to address this literature gap.Methods:Overall,144 paired malignant tumor tissues and paracancerous OSCC patient samples were harvested and the LGALS2 expression levels were examined through qPCR and western immunoblotting.The LGALS2 coding sequence was introduced into the pcDNA3.0 vector,to enable the overexpression of this gene,while an LGALS2-specific shRNA and corresponding controls were also obtained.The functionality of LGALS2 as a regulator of the ability of OSCC cells to grow and undergo apoptotic death in vitro was assessed through EdU uptake and CCK-8 assays,and flow cytometer,whereas a Transwell system was used to assess migratory activity and invasivity.An agonist of the Janus Kinase 2(JAK2)/Signal Transducer and Activator of Transcription 3(STAT3)pathway was also used to assess the role of this pathway in the context of LGALS2 signaling.Results:Here,we found that lower LGALS2 protein and mRNA expression were evident in OSCC tumor tissue samples,and these expression levels were associated with clinicopathological characteristics and patient survival outcomes.Silencing LGALS2 enhanced proliferation in OSCC cells while rendering these cells better able to resist apoptosis.The opposite was instead observed after LGALS2 was overexpressed.Mechanistically,the ability of LGALS2 to suppress the progression of OSCC was related to its ability to activate the JAK/STAT3 signaling axis.Conclusion:Those results suggest a role for LGALS2 as a suppressor of OSCC progression through its ability to modulate JAK/STAT3 signaling,supporting the potential utility of LGALS2 as a target for efforts aimed at treating OSCC patients.展开更多
Objective: To investigate the effects of Yanghe Pingchuan Granules on airway remodeling in asthmatic rats, and to explore the mechanism of Interleukin-6/Janus kinase 2/ Signal transducing activator of transcription 3(...Objective: To investigate the effects of Yanghe Pingchuan Granules on airway remodeling in asthmatic rats, and to explore the mechanism of Interleukin-6/Janus kinase 2/ Signal transducing activator of transcription 3(IL-6/JAK2/STAT3) signal axis. Methods: We separated 42 healthy male SD rats into two groups, a control group (7) and a model group (35).The model group was sensitized with a combination of ovalbumin (OVA) and aluminum hydroxide for 2 weeks, while the control group was given an equal amount of physiological saline.After 2 weeks, the modeling group was randomly divided into Model group, Yanghe Pingchuan Granules high, medium and low dose groups and Dexamethasone group, each group consisted of 7 animals. After 4 weeks, OVA atomization and gavage were used for stimulation and treatment. Yanghe Pingchuan Granules high, middle and low groups were given 15.48, 7.74, 3.87 g∙kg-1 Yanghe Pingchuan Granules daily, dexamethasone group was given 0.0625 mg∙kg-1 dexamethasone daily, and the other groups were given the same amount of normal saline. HE, PAS and Masson staining were used to observe the lung histopathological changes in rats. The levels of interleukin-6, IL-23 and IL-17A were detected by ELISA. The expression levels of JAK-2, P-JAK2, STAT3 and P-STAT3 in lung tissues were detected by Western blot. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the mRNA expression levels of IL-6, JAK2 and STAT3 in rat lung tissue. Results: The lung tissue structure of the model group was severely damaged compared to the control group, accompanied by a great many of inflammatory cell infiltration, goblet cell hyperplasia, subepithelial collagen fiber deposition and airway epithelial thickening were more obvious. The expressions of IL-6, IL- 23 and IL-17A in serum were significantly increased (P<0.01), the protein expression levels of JAK-2, P-JAK2, STAT3 and P-STAT3 and the mRNA expression levels of IL-6, JAK2 and STAT3 in lung tissue were significantly increased (P<0.01);Compared with the model group, inflammatory cell infiltration, goblet cell proliferation, subepithelial collagen fiber deposition and airway epithelial thickening were significantly reduced in each administration group, and the expressions of IL-6, IL-23 and IL-17A in serum were significantly decreased (P< 0.01). The protein expression levels of JAK-2, P-JAK2, STAT3 and P-STAT3 and mRNA expression levels of IL-6, JAK2 and STAT3 in lung tissue were significantly decreased (P<0.01). Conclusion: Yanghe Pingchuan Granules can significantly alleviate airway remodeling in asthmatic rats, and its mechanism may be through inhibiting the IL-6/JAK2/STAT3 signal axis.展开更多
目的研究通痹颗粒对胶原诱导性关节炎(collagen-induced arthritis,CIA)大鼠铁调素(hepcidin,Hepc)、Janus激酶(janus kinase,JAK)2/信号转导子和转录激活子(signal transduction and activator of transcription,STAT)3信号通路的影响...目的研究通痹颗粒对胶原诱导性关节炎(collagen-induced arthritis,CIA)大鼠铁调素(hepcidin,Hepc)、Janus激酶(janus kinase,JAK)2/信号转导子和转录激活子(signal transduction and activator of transcription,STAT)3信号通路的影响。方法选取36只雌性SD大鼠随机分成空白组、模型组、阳性对照组和通痹颗粒低、中、高剂量组,每组6只。空白组不予处理,其余组用牛Ⅱ型胶原建立CIA模型。造模完成后,空白组、模型组予生理盐水灌胃,其余各组分别以巴瑞替尼片和低、中、高剂量通痹颗粒灌胃。每天1次,连续4周。HE染色行滑膜组织病理学观察;酶联免疫吸附法测定血清Hepc、白细胞介素6(interleukin 6,IL-6)水平;逆转录-聚合酶链反应法测定滑膜中JAK2、STAT3、细胞信号因子传导抑制体(suppressor of cytokine signaling,SOCS)1、SOCS3的mRNA相对表达量;Western blot法检测滑膜中JAK2、p-JAK2、STAT3、p-STAT3、SOCS1、SOCS3的蛋白表达量。结果模型组见滑膜上皮结构缺损,滑膜重度增生,排列紊乱,并有大量炎症细胞浸润和多个血管翳形成;各给药组滑膜炎症均有所减轻,阳性对照组优于通痹颗粒高剂量组,通痹颗粒中、高剂量组优于低剂量组。与模型组相比,各给药组关节炎指数评分、血清Hepc和IL-6水平均显著降低(P<0.01);与阳性对照组相比,通痹颗粒中、低剂量组关节炎指数评分、血清Hepc和IL-6水平均升高(P<0.05)。与模型组比较,阳性对照组和通痹颗粒低、中、高剂量组JAK2、STAT3 mRNA和蛋白以及p-JAK2、p-STAT3的蛋白表达量均降低(P<0.05),而通路抑制因子SOCS1、SOCS3 mRNA和蛋白的表达均升高(P<0.05);与阳性对照组比较,通痹颗粒各剂量组JAK2、STAT3 mRNA和蛋白以及p-JAK2、p-STAT3的蛋白表达量均升高(P<0.05),而SOCS1、SOCS3 mRNA和蛋白的表达均降低(P<0.05)。结论通痹颗粒能够改善CIA大鼠滑膜炎症,其机制可能与抑制JAK2/STAT3信号通路而减少Hepc的表达有关。展开更多
Signal transducer and activator of transcription 3(STAT3), a member of the STAT family, is a key regulator of many physiological and pathological processes. Significant progress has been made in understanding the tran...Signal transducer and activator of transcription 3(STAT3), a member of the STAT family, is a key regulator of many physiological and pathological processes. Significant progress has been made in understanding the transcriptional control, posttranslational modification, cellular localization and functional regulation of STAT3. STAT3 can translocate into the nucleus and bind to specific promoter sequences, thereby exerting transcriptional regulation. Recent studies have shown that STAT3 can also translocate into mitochondria, participating in aerobic respiration and apoptosis. In addition, STAT3 plays an important role in inflammation and tumorigenesis by regulating cell proliferation, differentiation and metabolism. Conditional knockout mouse models make it possible to study the physiological function of STAT3 in specific tissues and organs. This review summarizes the latest advances in the understanding of the expression, regulation and function of STAT3 in physiological and tumorigenic processes.展开更多
文摘BACKGROUND Alveolar bone defects caused by inflammation are an urgent issue in oral implant surgery that must be solved.Regulating the various phenotypes of macrophages to enhance the inflammatory environment can significantly affect the progression of diseases and tissue engineering repair process.AIM To assess the influence of interleukin-10(IL-10)on the osteogenic differentiation of bone marrow mesenchymal stem cells(BMSCs)following their interaction with macrophages in an inflammatory environment.METHODS IL-10 modulates the differentiation of peritoneal macrophages in Wistar rats in an inflammatory environment.In this study,we investigated its impact on the proliferation,migration,and osteogenesis of BMSCs.The expression levels of signal transducer and activator of transcription 3(STAT3)and its activated form,phos-phorylated-STAT3,were examined in IL-10-stimulated macrophages.Subsequently,a specific STAT3 signaling inhibitor was used to impede STAT3 signal activation to further investigate the role of STAT3 signaling.RESULTS IL-10-stimulated macrophages underwent polarization to the M2 type through substitution,and these M2 macrophages actively facilitated the osteogenic differentiation of BMSCs.Mechanistically,STAT3 signaling plays a crucial role in the process by which IL-10 influences macrophages.Specifically,IL-10 stimulated the activation of the STAT3 signaling pathway and reduced the macrophage inflammatory response,as evidenced by its diminished impact on the osteogenic differentiation of BMSCs.CONCLUSION Stimulating macrophages with IL-10 proved effective in improving the inflammatory environment and promoting the osteogenic differentiation of BMSCs.The IL-10/STAT3 signaling pathway has emerged as a key regulator in the macrophage-mediated control of BMSCs’osteogenic differentiation.
基金supported by the National Natural Science Foundation of China(82070593)the Zhejiang Provincial Natural Science Foundation(LD21H030002)+1 种基金the Department of Science and Technology of Zhejiang Province(ZY2019008)the Youth Program of the National Natural Science Foundation of China(82200632).
文摘One-third of patients with autoimmune hepatitis(AIH)have cirrhosis at the time of diagnosis.The relevance of these variables,although unknown,is believed to be critical in AIH because of suspected interactions between the gut microbiome and genetic factors.Dysbiosis of the gut flora and elevated polymeric immunoglobulin receptor(pIgR)levels have been observed in both patients and mouse models.Moreover,there is a direct relationship between pIgR expression and transaminase levels in patients with AIH.In this study,we aimed to explore how pIgR influences the secretion of regenerating islet-derived 3 beta(Reg3b)and the flora composition in AIH using in vivo experiments involving patients with AIH and a concanavalin A-induced mouse model of AIH.Reg3b expression was reduced in pIgR gene(Pigr)-knockout mice compared to that in wild-type mice,leading to increased microbiota disruption.Conversely,exogenous pIgR supplementation increased Reg3b expression and maintained microbiota homeostasis.RNA sequencing revealed the participation of the interleukin(IL)-17 signaling pathway in the regulation of Reg3b through pIgR.Furthermore,the introduction of external pIgR could not restore the imbalance in gut microbiota in AIH,and the decrease in Reg3b expression was not apparent following the inhibition of signal transducer and activator of transcription 3(STAT3).In this study,pIgR facilitated the upregulation of Reg3b via the STAT3 pathway,which plays a crucial role in preserving the balance of the intestinal microbiota in AIH.Through this research,we discovered new molecular targets that can be used for the diagnosis and treatment of AIH.
基金supported by the National Natural Science Foundation of China[grant numbers 21873057,22373059]the Natural Science Foundation of Shandong Province[grant numbers ZR2023MB082]。
文摘Despite standard treatment for non-small cell lung cancer(NSCLC)being surgical resection,cancer recurrence and complications,such as induction of malignant pleural effusion(MPE)and significant postoperative pain,usually result in treatment failure.In this study,an alginate-based hybrid hydrogel(SOG)is developed that can be injected into the resection surface of the lungs during surgery.Briefly,endoplasmic reticulum-modified liposomes(MSLs)pre-loaded with the signal transducer and activator of transcription 3(STAT3)small interfering RNA and lidocaine hydrochloride are encapsulated in SOG.Once applied,MSLs strongly downregulated STAT3 expression in the tumor microenvironment,resulting in the apoptosis of lung cancer cells and polarization of tumor-associated macrophages towards the M1-like phenotype.Meanwhile,the release of lidocaine hydrochloride(LID)was beneficial for pain relief and natural killer cell activation.Our data demonstrated MSL@LID@SOG not only efficiently inhibited tumor growth but also potently improved the quality of life,including reduced MPE volume and pain relief in orthotopic NSCLC mouse models,even with a single administration.MSL@LID@SOG shows potential for comprehensive clinical management upon tumor resection in NSCLC,and may alter the treatment paradigms for other cancers.
基金Ningxia Medical University Project,No. XZ2021005Ningxia Natural Science Foundation,Nos. 2022AAC03144 and 2022AAC02039National Natural Science Foundation of China,No. 82260879
文摘BACKGROUND Gastric cancer(GC)is one of the most common cancer types worldwide,and its prevention and treatment methods have garnered much attention.As the active ingredient of licorice,18β-glycyrrhetinic acid(18β-GRA)has a variety of pharmacological effects.The aim of this study was to explore the effective target of 18β-GRA in the treatment of GC,in order to provide effective ideas for the clinical prevention and treatment of GC.AIM To investigate the mechanism of 18β-GRA in inhibiting cell proliferation and promoting autophagy flux in GC cells.METHODS Whole transcriptomic analyses were used to analyze and screen differentially expressed microRNAs(miRNAs)in GC cells after 18β-GRA intervention.Lentivirus-transfected GC cells and the Cell Counting Kit-8 were used to detect cell proliferation ability,cell colony formation ability was detected by the clone formation assay,and flow cytometry was used to detect the cell cycle and apoptosis.A nude mouse transplantation tumor model of GC cells was constructed to verify the effect of miR-328-3p overexpression on the tumorigenicity of GC cells.Tumor tissue morphology was observed by hematoxylin and eosin staining,and microtubule-associated protein light chain 3(LC3)expression was detected by immunohistochemistry.TransmiR,STRING,and miRWalk databases were used to predict the relationship between miR-328-3p and signal transducer and activator of transcription 3(STAT3)-related information.Expression of STAT3 mRNA and miR-328-3p was detected by quantitative polymerase chain reaction(qPCR)and the expression levels of STAT3,phosphorylated STAT3(p-STAT3),and LC3 were detected by western blot analysis.The targeted relationship between miR-328-3p and STAT3 was detected using the dual-luciferase reporter gene system.AGS cells were infected with monomeric red fluorescent protein-green fluorescent protein-LC3 adenovirus double label.LC3 was labeled and autophagy flow was observed under a confocal laser microscope.RESULTS The expression of miR-328-3p was significantly upregulated after 18β-GRA intervention in AGS cells(P=4.51E-06).Overexpression of miR-328-3p inhibited GC cell proliferation and colony formation ability,arrested the cell cycle in the G0/G1 phase,promoted cell apoptosis,and inhibited the growth of subcutaneous tumors in BALB/c nude mice(P<0.01).No obvious necrosis was observed in the tumor tissue in the negative control group(no drug intervention or lentivirus transfection)and vector group(the blank vector for lentivirus transfection),and more cells were loose and necrotic in the miR-328-3p group.Bioinformatics tools predicted that miR-328-3p has a targeting relationship with STAT3,and STAT3 was closely related to autophagy markers such as p62.After overexpressing miR-328-3p,the expression level of STAT3 mRNA was significantly decreased(P<0.01)and p-STAT3 was downregulated(P<0.05).The dual-luciferase reporter gene assay showed that the luciferase activity of miR-328-3p and STAT33’untranslated regions of the wild-type reporter vector group was significantly decreased(P<0.001).Overexpressed miR-328-3p combined with bafilomycin A1(Baf A1)was used to detect the expression of LC3 II.Compared with the vector group,the expression level of LC3 II in the overexpressed miR-328-3p group was downregulated(P<0.05),and compared with the Baf A1 group,the expression level of LC3 II in the overexpressed miR-328-3p+Baf A1 group was upregulated(P<0.01).The expression of LC3 II was detected after intervention of 18β-GRA in GC cells,and the results were consistent with the results of miR-328-3p overexpression(P<0.05).Additional studies showed that 18β-GRA promoted autophagy flow by promoting autophagosome synthesis(P<0.001).qPCR showed that the expression of STAT3 mRNA was downregulated after drug intervention(P<0.05).Western blot analysis showed that the expression levels of STAT3 and p-STAT3 were significantly downregulated after drug intervention(P<0.05).CONCLUSION 18β-GRA promotes the synthesis of autophagosomes and inhibits GC cell proliferation by regulating the miR-328-3p/STAT3 signaling pathway.
基金supported by the National Natural Science Foundation of China(NSFC)(81973316,82173807)the China Postdoctoral Science Foundation(2020M681914)+1 种基金the Fund from Tianjin Municipal Health Commission(ZC200093)the Open Fund of Tianjin Central Hospital of Obstetrics and Gynecology/Tianjin Key Laboratory of human development and reproductive regulation(2021XHY01)。
文摘Psoriasis is a chronic autoimmune disease featured by patches on the skin.It is caused by malfunction of immune cells and keratinocytes with inflammation as one of its key features.Apigenin(API)is a natural flavonoid with anti-inflammatory and immunoregulatory properties.Therefore,we speculated that API can ameliorate psoriasis,and determined its effect on the development of psoriasis by using imiquimod(IMQ)-induced psoriasis mouse model.Our results showed that API attenuated IMQ-induced phenotypic changes,such as erythema,scaling and epidermal thickening,and improved splenic hyperplasia.Abnormal differentiation of immune cells was restored in API-treated mice.Mechanistically,we revealed that API is a key regulator of signal transducer activator of transcription 3(STAT3).API regulated immune responses by reducing interleukin-23(IL-23)/STAT3/IL-17A axis.Moreover,it suppressed IMQ-caused cell hyperproliferation by inactivating STAT3 through regulation of extracellular signal-regulated kinase 1/2 and nuclear factor-κB(NF-κB)pathway.Furthermore,API reduced expression of inflammatory cytokines through inactivation of NF-κB.Taken together,our study demonstrates that API can ameliorate psoriasis and may be considered as a strategy for psoriasis treatment.
基金supported by grants from Key R&D Project of Science and Technology Foundation of Sichuan Province(2022YFS0290).
文摘Background:Galectin 2(LGALS2)is a protein previously reported to serve as a mediator of disease progression in a range of cancers.The function of LGALS2 in oral squamous cell carcinoma(OSCC),however,has yet to be explored,prompting the present study to address this literature gap.Methods:Overall,144 paired malignant tumor tissues and paracancerous OSCC patient samples were harvested and the LGALS2 expression levels were examined through qPCR and western immunoblotting.The LGALS2 coding sequence was introduced into the pcDNA3.0 vector,to enable the overexpression of this gene,while an LGALS2-specific shRNA and corresponding controls were also obtained.The functionality of LGALS2 as a regulator of the ability of OSCC cells to grow and undergo apoptotic death in vitro was assessed through EdU uptake and CCK-8 assays,and flow cytometer,whereas a Transwell system was used to assess migratory activity and invasivity.An agonist of the Janus Kinase 2(JAK2)/Signal Transducer and Activator of Transcription 3(STAT3)pathway was also used to assess the role of this pathway in the context of LGALS2 signaling.Results:Here,we found that lower LGALS2 protein and mRNA expression were evident in OSCC tumor tissue samples,and these expression levels were associated with clinicopathological characteristics and patient survival outcomes.Silencing LGALS2 enhanced proliferation in OSCC cells while rendering these cells better able to resist apoptosis.The opposite was instead observed after LGALS2 was overexpressed.Mechanistically,the ability of LGALS2 to suppress the progression of OSCC was related to its ability to activate the JAK/STAT3 signaling axis.Conclusion:Those results suggest a role for LGALS2 as a suppressor of OSCC progression through its ability to modulate JAK/STAT3 signaling,supporting the potential utility of LGALS2 as a target for efforts aimed at treating OSCC patients.
基金The Sixth Batch of Special Support Plans in Anhui Province(No.dlPtzjh20200050)Key Natural Science Research Project of Higher Education Institutions in Anhui Province(No.KJ2020A0426)。
文摘Objective: To investigate the effects of Yanghe Pingchuan Granules on airway remodeling in asthmatic rats, and to explore the mechanism of Interleukin-6/Janus kinase 2/ Signal transducing activator of transcription 3(IL-6/JAK2/STAT3) signal axis. Methods: We separated 42 healthy male SD rats into two groups, a control group (7) and a model group (35).The model group was sensitized with a combination of ovalbumin (OVA) and aluminum hydroxide for 2 weeks, while the control group was given an equal amount of physiological saline.After 2 weeks, the modeling group was randomly divided into Model group, Yanghe Pingchuan Granules high, medium and low dose groups and Dexamethasone group, each group consisted of 7 animals. After 4 weeks, OVA atomization and gavage were used for stimulation and treatment. Yanghe Pingchuan Granules high, middle and low groups were given 15.48, 7.74, 3.87 g∙kg-1 Yanghe Pingchuan Granules daily, dexamethasone group was given 0.0625 mg∙kg-1 dexamethasone daily, and the other groups were given the same amount of normal saline. HE, PAS and Masson staining were used to observe the lung histopathological changes in rats. The levels of interleukin-6, IL-23 and IL-17A were detected by ELISA. The expression levels of JAK-2, P-JAK2, STAT3 and P-STAT3 in lung tissues were detected by Western blot. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the mRNA expression levels of IL-6, JAK2 and STAT3 in rat lung tissue. Results: The lung tissue structure of the model group was severely damaged compared to the control group, accompanied by a great many of inflammatory cell infiltration, goblet cell hyperplasia, subepithelial collagen fiber deposition and airway epithelial thickening were more obvious. The expressions of IL-6, IL- 23 and IL-17A in serum were significantly increased (P<0.01), the protein expression levels of JAK-2, P-JAK2, STAT3 and P-STAT3 and the mRNA expression levels of IL-6, JAK2 and STAT3 in lung tissue were significantly increased (P<0.01);Compared with the model group, inflammatory cell infiltration, goblet cell proliferation, subepithelial collagen fiber deposition and airway epithelial thickening were significantly reduced in each administration group, and the expressions of IL-6, IL-23 and IL-17A in serum were significantly decreased (P< 0.01). The protein expression levels of JAK-2, P-JAK2, STAT3 and P-STAT3 and mRNA expression levels of IL-6, JAK2 and STAT3 in lung tissue were significantly decreased (P<0.01). Conclusion: Yanghe Pingchuan Granules can significantly alleviate airway remodeling in asthmatic rats, and its mechanism may be through inhibiting the IL-6/JAK2/STAT3 signal axis.
基金Supported by National Natural Science Foundation of China,No.30930013
文摘Signal transducer and activator of transcription 3(STAT3), a member of the STAT family, is a key regulator of many physiological and pathological processes. Significant progress has been made in understanding the transcriptional control, posttranslational modification, cellular localization and functional regulation of STAT3. STAT3 can translocate into the nucleus and bind to specific promoter sequences, thereby exerting transcriptional regulation. Recent studies have shown that STAT3 can also translocate into mitochondria, participating in aerobic respiration and apoptosis. In addition, STAT3 plays an important role in inflammation and tumorigenesis by regulating cell proliferation, differentiation and metabolism. Conditional knockout mouse models make it possible to study the physiological function of STAT3 in specific tissues and organs. This review summarizes the latest advances in the understanding of the expression, regulation and function of STAT3 in physiological and tumorigenic processes.