A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a...A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model.展开更多
Cadmium(Cd)contamination in rice has been a serious threat to human health.To investigate the effects of arbuscular mycorrhizal fungi(AMF)on the Cd translocation in rice,a controlled pot experiment was conducted.The r...Cadmium(Cd)contamination in rice has been a serious threat to human health.To investigate the effects of arbuscular mycorrhizal fungi(AMF)on the Cd translocation in rice,a controlled pot experiment was conducted.The results indicated that AMF significantly increased rice biomass,with an increase of up to 40.0%,particularly in root biomass by up to 68.4%.Notably,the number of prominent rice individuals also increased,and their plasticity was enhanced following AMF inoculation.AMF led to an increase in the net photosynthetic rate and antioxidant enzyme activity of rice.In the AMF treatment group,the Cd concentration in the rice roots was significantly higher(19.1%‒68.0%)compared with that in the control group.Conversely,the Cd concentration in the rice seeds was lower in the AMF treatment group,indicating that AMF facilitated the sequestration of Cd in rice roots and reduced Cd accumulation in the seeds.Path coefficients varied across different treatments,suggesting that AMF inoculation reduced the direct impact of soil Cd concentration on the total Cd accumulation in seeds.The translocation of Cd was consistently associated with simultaneous growth dilution and compensatory accumulation as a result of mycorrhizal effects.Our study quantitatively analyzed this process through path analysis and clarified the causal relationship between rice growth and Cd transfer under the influence of AMF.展开更多
The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation resul...The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection.展开更多
The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotatio...The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotation is difficult and expensive.The incorrect label annotation produces two negative effects:1)the complex decision boundary of diagnosis models lowers the generalization performance on the target domain,and2)the distribution of target domain samples becomes misaligned with the false-labeled samples.To overcome these negative effects,this article proposes a solution called the label recovery and trajectory designable network(LRTDN).LRTDN consists of three parts.First,a residual network with dual classifiers is to learn features from cross-domain samples.Second,an annotation check module is constructed to generate a label anomaly indicator that could modify the abnormal labels of false-labeled samples in the source domain.With the training of relabeled samples,the complexity of diagnosis model is reduced via semi-supervised learning.Third,the adaptation trajectories are designed for sample distributions across domains.This ensures that the target domain samples are only adapted with the pure-labeled samples.The LRTDN is verified by two case studies,in which the diagnosis knowledge of bearings is transferred across different working conditions as well as different yet related machines.The results show that LRTDN offers a high diagnosis accuracy even in the presence of incorrect annotation.展开更多
The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application i...The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures.展开更多
We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase lockin...We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme,the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site.This passive scheme exhibits fine robustness and reliability,making it suitable for long-distance and noisy fiber links.An optical regeneration station is used in the link for signal amplification and cascaded transmission.The phase noise cancellation and transfer instability of the 972-km link is investigated,and transfer instability of 1.1×10^(-19)at 10^(4)s is achieved.This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links.展开更多
Mutations in mitochondrial DNA(mtDNA)are maternally inherited and have the potential to cause severe disorders.Mitochondrial replacement therapies,including spindle,polar body,and pronuclear transfers,are promising st...Mutations in mitochondrial DNA(mtDNA)are maternally inherited and have the potential to cause severe disorders.Mitochondrial replacement therapies,including spindle,polar body,and pronuclear transfers,are promising strategies for preventing the hereditary transmission of mtDNA diseases.While pronuclear transfer has been used to generate mitochondrial replacement mouse models and human embryos,its application in non-human primates has not been previously reported.In this study,we successfully generated four healthy cynomolgus monkeys(Macaca fascicularis)via female pronuclear transfer.These individuals all survived for more than two years and exhibited minimal mtDNA carryover(3.8%–6.7%),as well as relatively stable mtDNA heteroplasmy dynamics during development.The successful establishment of this nonhuman primate model highlights the considerable potential of pronuclear transfer in reducing the risk of inherited mtDNA diseases and provides a valuable preclinical research model for advancing mitochondrial replacement therapies in humans.展开更多
This paper proposes an artificial intelligence-based robust information hiding algorithm to address the issue of confidential information being susceptible to noise attacks during transmission.The algorithm we designe...This paper proposes an artificial intelligence-based robust information hiding algorithm to address the issue of confidential information being susceptible to noise attacks during transmission.The algorithm we designed aims to mitigate the impact of various noise attacks on the integrity of secret information during transmission.The method we propose involves encoding secret images into stylized encrypted images and applies adversarial transfer to both the style and content features of the original and embedded data.This process effectively enhances the concealment and imperceptibility of confidential information,thereby improving the security of such information during transmission and reducing security risks.Furthermore,we have designed a specialized attack layer to simulate real-world attacks and common noise scenarios encountered in practical environments.Through adversarial training,the algorithm is strengthened to enhance its resilience against attacks and overall robustness,ensuring better protection against potential threats.Experimental results demonstrate that our proposed algorithm successfully enhances the concealment and unknowability of secret information while maintaining embedding capacity.Additionally,it ensures the quality and fidelity of the stego image.The method we propose not only improves the security and robustness of information hiding technology but also holds practical application value in protecting sensitive data and ensuring the invisibility of confidential information.展开更多
The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-dema...The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-demanding.To assess the slope stability problems with a more desirable computational effort,many machine learning(ML)algorithms have been proposed.However,most ML-based techniques require that the training data must be in the same feature space and have the same distribution,and the model may need to be rebuilt when the spatial distribution changes.This paper presents a new ML-based algorithm,which combines the principal component analysis(PCA)-based neural network(NN)and transfer learning(TL)techniques(i.e.PCAeNNeTL)to conduct the stability analysis of slopes with different spatial distributions.The Monte Carlo coupled with finite element simulation is first conducted for data acquisition considering the spatial variability of cohesive strength or friction angle of soils from eight slopes with the same geometry.The PCA method is incorporated into the neural network algorithm(i.e.PCA-NN)to increase the computational efficiency by reducing the input variables.It is found that the PCA-NN algorithm performs well in improving the prediction of slope stability for a given slope in terms of the computational accuracy and computational effort when compared with the other two algorithms(i.e.NN and decision trees,DT).Furthermore,the PCAeNNeTL algorithm shows great potential in assessing the stability of slope even with fewer training data.展开更多
Energy transfer is ubiquitous in natural and artificial lightharvesting systems,and coherent energy transfer,a highly efficient energy transfer process,has been accepted to play a vital role in such systems.However,th...Energy transfer is ubiquitous in natural and artificial lightharvesting systems,and coherent energy transfer,a highly efficient energy transfer process,has been accepted to play a vital role in such systems.However,the energy oscillation of coherent energy transfer is exceedingly difficult to capture because of its evanescence due to the interaction with a thermal environment.Here a microscopic quantum model is used to study the time evolution of electrons triggered energy transfer between coherently coupled donoracceptor molecules in scanning tunneling microscope(STM).A series of topics in the plasmonic nanocavity(PNC)coupled donor-acceptor molecules system are discussed,including resonant and nonresonant coherent energy transfer,dephasing assisted energy transfer,PNC coupling strength dependent energy transfer,Fano resonance of coherently coupled donor-acceptor molecules,and polariton-mediated energy transfer.展开更多
Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted ...Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance.展开更多
Objective Both sequential embryo transfer(SeET)and double-blastocyst transfer(DBT)can serve as embryo transfer strategies for women with recurrent implantation failure(RIF).This study aims to compare the effects of Se...Objective Both sequential embryo transfer(SeET)and double-blastocyst transfer(DBT)can serve as embryo transfer strategies for women with recurrent implantation failure(RIF).This study aims to compare the effects of SeET and DBT on pregnancy outcomes.Methods Totally,261 frozen-thawed embryo transfer cycles of 243 RIF women were included in this multicenter retrospective analysis.According to different embryo quality and transfer strategies,they were divided into four groups:group A,good-quality SeET(GQ-SeET,n=38 cycles);group B,poor-quality or mixed-quality SeET(PQ/MQ-SeET,n=31 cycles);group C,good-quality DBT(GQ-DBT,n=121 cycles);and group D,poor-quality or mixed-quality DBT(PQ/MQ-DBT,n=71 cycles).The main outcome,clinical pregnancy rate,was compared,and the generalized estimating equation(GEE)model was used to correct potential confounders that might impact pregnancy outcomes.Results GQ-DBT achieved a significantly higher clinical pregnancy rate(aOR 2.588,95%CI 1.267–5.284,P=0.009)and live birth rate(aOR 3.082,95%CI 1.482–6.412,P=0.003)than PQ/MQ-DBT.Similarly,the clinical pregnancy rate was significantly higher in GQ-SeET than in PQ/MQ-SeET(aOR 4.047,95%CI 1.218–13.450,P=0.023).The pregnancy outcomes of GQ-SeET were not significantly different from those of GQ-DBT,and the same results were found between PQ/MQ-SeET and PQ/MQ-DBT.Conclusion SeET relative to DBT did not seem to improve pregnancy outcomes for RIF patients if the embryo quality was comparable between the two groups.Better clinical pregnancy outcomes could be obtained by transferring good-quality embryos,no matter whether in SeET or DBT.Embryo quality plays a more important role in pregnancy outcomes for RIF patients.展开更多
The visions of Industry 4.0 and 5.0 have reinforced the industrial environment.They have also made artificial intelligence incorporated as a major facilitator.Diagnosing machine faults has become a solid foundation fo...The visions of Industry 4.0 and 5.0 have reinforced the industrial environment.They have also made artificial intelligence incorporated as a major facilitator.Diagnosing machine faults has become a solid foundation for automatically recognizing machine failure,and thus timely maintenance can ensure safe operations.Transfer learning is a promising solution that can enhance the machine fault diagnosis model by borrowing pre-trained knowledge from the source model and applying it to the target model,which typically involves two datasets.In response to the availability of multiple datasets,this paper proposes using selective and adaptive incremental transfer learning(SA-ITL),which fuses three algorithms,namely,the hybrid selective algorithm,the transferability enhancement algorithm,and the incremental transfer learning algorithm.It is a selective algorithm that enables selecting and ordering appropriate datasets for transfer learning and selecting useful knowledge to avoid negative transfer.The algorithm also adaptively adjusts the portion of training data to balance the learning rate and training time.The proposed algorithm is evaluated and analyzed using ten benchmark datasets.Compared with other algorithms from existing works,SA-ITL improves the accuracy of all datasets.Ablation studies present the accuracy enhancements of the SA-ITL,including the hybrid selective algorithm(1.22%-3.82%),transferability enhancement algorithm(1.91%-4.15%),and incremental transfer learning algorithm(0.605%-2.68%).These also show the benefits of enhancing the target model with heterogeneous image datasets that widen the range of domain selection between source and target domains.展开更多
Optimizing the intrinsic activity of non-noble metal by precisely tailoring electronic structure offers an appealing way to construct cost-effective catalysts for selective biomass valorization.Herein,we reported a P-...Optimizing the intrinsic activity of non-noble metal by precisely tailoring electronic structure offers an appealing way to construct cost-effective catalysts for selective biomass valorization.Herein,we reported a P-doping bifunctional catalyst(Ni-P/mSiO_(2))that achieved 96.6%yield for the hydrogenation rearrangement of furfural to cyclopentanone at mild conditions(1 MPaH_(2),150°C).The turnover frequency of Ni-P/mSiO_(2)was 411.9 h^(-1),which was 3.2-fold than that of Ni/mSiO_(2)(127.2 h^(-1)).Detailed characterizations and differential charge density calculations revealed that the electron-deficient Niδ+species were generated by the electron transfer from Ni to P,which promoted the ring rearrangement reaction.Density functional theory calculations illustrated that the presence of P atoms endowed furfural tilted adsorb on the Ni surface by the C=O group and facilitated the desorption of cyclopentanone.This work unraveled the connection between the localized electronic structures and the catalytic properties,so as to provide a promising reference for designing advanced catalysts for biomass valorization.展开更多
Leveraging big data analytics and advanced algorithms to accelerate and optimize the process of molecular and materials design, synthesis, and application has revolutionized the field of molecular and materials scienc...Leveraging big data analytics and advanced algorithms to accelerate and optimize the process of molecular and materials design, synthesis, and application has revolutionized the field of molecular and materials science, allowing researchers to gain a deeper understanding of material properties and behaviors,leading to the development of new materials that are more efficient and reliable. However, the difficulty in constructing large-scale datasets of new molecules/materials due to the high cost of data acquisition and annotation limits the development of conventional machine learning(ML) approaches. Knowledgereused transfer learning(TL) methods are expected to break this dilemma. The application of TL lowers the data requirements for model training, which makes TL stand out in researches addressing data quality issues. In this review, we summarize recent progress in TL related to molecular and materials. We focus on the application of TL methods for the discovery of advanced molecules/materials, particularly, the construction of TL frameworks for different systems, and how TL can enhance the performance of models. In addition, the challenges of TL are also discussed.展开更多
In the coal-to-ethylene glycol(CTEG)process,precisely estimating quality variables is crucial for process monitoring,optimization,and control.A significant challenge in this regard is relying on offline laboratory ana...In the coal-to-ethylene glycol(CTEG)process,precisely estimating quality variables is crucial for process monitoring,optimization,and control.A significant challenge in this regard is relying on offline laboratory analysis to obtain these variables,which often incurs substantial monetary costs and significant time delays.The resulting few-shot learning scenarios present a hurdle to the efficient development of predictive models.To address this issue,our study introduces the transferable adversarial slow feature extraction network(TASF-Net),an innovative approach designed specifically for few-shot quality prediction in the CTEG process.TASF-Net uniquely integrates the slowness principle with a deep Bayesian framework,effectively capturing the nonlinear and inertial characteristics of the CTEG process.Additionally,the model employs a variable attention mechanism to identify quality-related input variables adaptively at each time step.A key strength of TASF-Net lies in its ability to navigate the complex measurement noise,outliers,and system interference typical in CTEG data.Adversarial learning strategy using a min-max game is adopted to improve its robustness and ability to model irregular industrial data accurately and significantly.Furthermore,an incremental refining transfer learning framework is designed to further improve few-shot prediction performance achieved by transferring knowledge from the pretrained model on the source domain to the target domain.The effectiveness and superiority of TASF-Net have been empirically validated using a real-world CTEG dataset.Compared with some state-of-the-art methods,TASF-Net demonstrates exceptional capability in addressing the intricate challenges for few-shot quality prediction in the CTEG process.展开更多
The burgeoning interest in flexible electronics necessitates the creation of patterning technology specifically tailored for flexible substrates and complex surface morphologies.Among a variety of patterning technique...The burgeoning interest in flexible electronics necessitates the creation of patterning technology specifically tailored for flexible substrates and complex surface morphologies.Among a variety of patterning techniques,transfer printing emerges as one of the most efficient,cost-effective,and scalable methods.It boasts the ability for high-throughput fabrication of 0–3D micro-and nano-structures on flexible substrates,working in tandem with traditional lithography methods.This review highlights the critical issue of transfer printing:the flawless transfer of devices during the pick-up and printing process.We encapsulate recent advancements in numerous transfer printing techniques,with a particular emphasis on strategies to control adhesion forces at the substrate/device/stamp interfaces.These strategies are employed to meet the requirements of competing fractures for successful pick-up and print processes.The mechanism,advantages,disadvantages,and typical applications of each transfer printing technique will be thoroughly discussed.The conclusion section provides design guidelines and probes potential directions for future advancements.展开更多
Mn^(2+)doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nano-crystals(NCs).However,it is still difficult to understand the interplay of Mn^(2+)luminescenc...Mn^(2+)doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nano-crystals(NCs).However,it is still difficult to understand the interplay of Mn^(2+)luminescence and the matrix self-trapped exciton(STE)emission therein.In this study,Mn^(2+)-doped CsCdCl_(3) NCs are prepared by hot injection,in which CsCdCl_(3) is selected because of its unique crystal structure suitable for STE emission.The blue emission at 441 nm of undoped CsCdCl_(3) NCs originates from the defect states in the NCs.Mn^(2+)doping promotes lattice distortion of CsCdCl_(3) and generates bright orange-red light emission at 656 nm.The en-ergy transfer from the STEs of CsCdCl_(3) to the excited levels of the Mn^(2+)ion is confirmed to be a significant factor in achieving efficient luminescence in CsCdCl_(3):Mn^(2+)NCs.This work highlights the crucial role of energy transfer from STEs to Mn^(2+)dopants in Mn^(2+)-doped halide NCs and lays the groundwork for modifying the luminescence of other metal halide perovskite NCs.展开更多
The semi-rigid pile-supported composite foundation is widely used in highway projects due to its effectiveness in increasing the bearing capacity and stability of foundations.It is crucial to understand the stress dis...The semi-rigid pile-supported composite foundation is widely used in highway projects due to its effectiveness in increasing the bearing capacity and stability of foundations.It is crucial to understand the stress distribution across the embankment width and the behaviour of unreinforced foundations.Thus,five centrifuge tests were conducted to examine the bearing and deformation behaviours of NPRS(Non-Connected Piled Raft Systems)and GRPS(GeosyntheticReinforced Pile-Supported systems)with varying substratum stiffness,then a comparative analysis was conducted on embankment settlement,pressures underneath the embankments,and axial forces along the piles.The results indicated that greater substratum stiffness correlates with reduced settlement and deformation at various depths.Deformation occurring 5 meters from the embankment toe includes settlement in NPRS and upward movement in GRPS.The potential sliding surface is primarily located within the embankment in NPRS,whereas it may extend through both the embankment and foundation in GRPS.The pile-soil stress ratio and efficiency in NPRS are higher than in GRPS across the embankment.The axial force borne by end-bearing piles is significantly greater than that by floating piles.As the buried depth increases,the axial force in GRPS initially rises then declines,whereas in NPRS,it remains relatively constant within a certain range before decreasing.This study aids in assessing the applicability of composite foundations in complex railway environments and provides a reference for procedural measures under similar conditions.展开更多
Though Zn-air batteries(ZABs)are one of the most promising system for energy storage and conversion,challenge still persists in its commercial application due to the sluggish kinetics of oxygen reduction/evolution rea...Though Zn-air batteries(ZABs)are one of the most promising system for energy storage and conversion,challenge still persists in its commercial application due to the sluggish kinetics of oxygen reduction/evolution reaction(ORR/OER).Hereby,a polyvinylidene fluoride(PVDF)-assisted pyrolysis strategy is proposed to develop a novel corrugated plate-like bifunctional electrocatalyst using two-dimensional zeolitic imidazolate frameworks(2D ZIF-67)as the precursor.The employed PVDF plays an important role in inheriting the original 2D structure of ZIF-67 and modulating the composition of the final products.As a result,a corrugated plate-like electrocatalyst,high-density Co nanoparticles decorated 2D Co,N,and F tri-doped carbon nanosheets,can be obtained.The acquired electrocatalyst enables efficient active sites and rapid mass transfer simultaneously,thus showing appreciable electrocatalytic performance for rechargeable Zn-air batteries.Undoubtedly,our proposed strategy offers a new perspective to the design of advanced oxygen electrocatalysts.展开更多
文摘A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model.
基金the National Natural Science Foundation of China(Grant No.52270154)the National Engineering Research Center for Bioenergy,Harbin Institute of Technology,China(Grant No.2021C001).
文摘Cadmium(Cd)contamination in rice has been a serious threat to human health.To investigate the effects of arbuscular mycorrhizal fungi(AMF)on the Cd translocation in rice,a controlled pot experiment was conducted.The results indicated that AMF significantly increased rice biomass,with an increase of up to 40.0%,particularly in root biomass by up to 68.4%.Notably,the number of prominent rice individuals also increased,and their plasticity was enhanced following AMF inoculation.AMF led to an increase in the net photosynthetic rate and antioxidant enzyme activity of rice.In the AMF treatment group,the Cd concentration in the rice roots was significantly higher(19.1%‒68.0%)compared with that in the control group.Conversely,the Cd concentration in the rice seeds was lower in the AMF treatment group,indicating that AMF facilitated the sequestration of Cd in rice roots and reduced Cd accumulation in the seeds.Path coefficients varied across different treatments,suggesting that AMF inoculation reduced the direct impact of soil Cd concentration on the total Cd accumulation in seeds.The translocation of Cd was consistently associated with simultaneous growth dilution and compensatory accumulation as a result of mycorrhizal effects.Our study quantitatively analyzed this process through path analysis and clarified the causal relationship between rice growth and Cd transfer under the influence of AMF.
基金the National Natural Science Foundation of China(Grant Nos.62227901,12202068)the Civil Aerospace Pre-research Project(Grant No.D020304).
文摘The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection.
基金the National Key R&D Program of China(2022YFB3402100)the National Science Fund for Distinguished Young Scholars of China(52025056)+4 种基金the National Natural Science Foundation of China(52305129)the China Postdoctoral Science Foundation(2023M732789)the China Postdoctoral Innovative Talents Support Program(BX20230290)the Open Foundation of Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment(2022JXKF JJ01)the Fundamental Research Funds for Central Universities。
文摘The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotation is difficult and expensive.The incorrect label annotation produces two negative effects:1)the complex decision boundary of diagnosis models lowers the generalization performance on the target domain,and2)the distribution of target domain samples becomes misaligned with the false-labeled samples.To overcome these negative effects,this article proposes a solution called the label recovery and trajectory designable network(LRTDN).LRTDN consists of three parts.First,a residual network with dual classifiers is to learn features from cross-domain samples.Second,an annotation check module is constructed to generate a label anomaly indicator that could modify the abnormal labels of false-labeled samples in the source domain.With the training of relabeled samples,the complexity of diagnosis model is reduced via semi-supervised learning.Third,the adaptation trajectories are designed for sample distributions across domains.This ensures that the target domain samples are only adapted with the pure-labeled samples.The LRTDN is verified by two case studies,in which the diagnosis knowledge of bearings is transferred across different working conditions as well as different yet related machines.The results show that LRTDN offers a high diagnosis accuracy even in the presence of incorrect annotation.
基金the support of the National Natural Science Foundation of China grant number 51776175。
文摘The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12103059,12033007,12303077,and 12303076)the Fund from the Xi’an Science and Technology Bureau,China(Grant No.E019XK1S04)the Fund from the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.1188000XGJ).
文摘We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme,the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site.This passive scheme exhibits fine robustness and reliability,making it suitable for long-distance and noisy fiber links.An optical regeneration station is used in the link for signal amplification and cascaded transmission.The phase noise cancellation and transfer instability of the 972-km link is investigated,and transfer instability of 1.1×10^(-19)at 10^(4)s is achieved.This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links.
基金supported by the National Natural Science Foundation of China (82021001,31825018)National Key Research and Development Program of China (2022YFF0710901)+3 种基金Shanghai Municipal Science and Technology Major Project (2018SHZDZX05)Strategic Priority Research Program of the Chinese Academy of Sciences (XDB32060100)Biological Resources Program of Chinese Academy of Sciences (KFJ-BRP-005)National Science and Technology Innovation 2030 Major Program 2021ZD0200900。
文摘Mutations in mitochondrial DNA(mtDNA)are maternally inherited and have the potential to cause severe disorders.Mitochondrial replacement therapies,including spindle,polar body,and pronuclear transfers,are promising strategies for preventing the hereditary transmission of mtDNA diseases.While pronuclear transfer has been used to generate mitochondrial replacement mouse models and human embryos,its application in non-human primates has not been previously reported.In this study,we successfully generated four healthy cynomolgus monkeys(Macaca fascicularis)via female pronuclear transfer.These individuals all survived for more than two years and exhibited minimal mtDNA carryover(3.8%–6.7%),as well as relatively stable mtDNA heteroplasmy dynamics during development.The successful establishment of this nonhuman primate model highlights the considerable potential of pronuclear transfer in reducing the risk of inherited mtDNA diseases and provides a valuable preclinical research model for advancing mitochondrial replacement therapies in humans.
基金the National Natural Science Foundation of China(Nos.62272478,61872384)Natural Science Foundation of Shanxi Province(No.2023-JC-YB-584)+1 种基金National Natural Science Foundation of China(No.62172436)Engineering University of PAP’s Funding for Scientific Research Innovation Team,Engineering University of PAP’s Funding for Key Researcher(No.KYGG202011).
文摘This paper proposes an artificial intelligence-based robust information hiding algorithm to address the issue of confidential information being susceptible to noise attacks during transmission.The algorithm we designed aims to mitigate the impact of various noise attacks on the integrity of secret information during transmission.The method we propose involves encoding secret images into stylized encrypted images and applies adversarial transfer to both the style and content features of the original and embedded data.This process effectively enhances the concealment and imperceptibility of confidential information,thereby improving the security of such information during transmission and reducing security risks.Furthermore,we have designed a specialized attack layer to simulate real-world attacks and common noise scenarios encountered in practical environments.Through adversarial training,the algorithm is strengthened to enhance its resilience against attacks and overall robustness,ensuring better protection against potential threats.Experimental results demonstrate that our proposed algorithm successfully enhances the concealment and unknowability of secret information while maintaining embedding capacity.Additionally,it ensures the quality and fidelity of the stego image.The method we propose not only improves the security and robustness of information hiding technology but also holds practical application value in protecting sensitive data and ensuring the invisibility of confidential information.
基金supported by the National Natural Science Foundation of China(Grant No.52008402)the Central South University autonomous exploration project(Grant No.2021zzts0790).
文摘The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-demanding.To assess the slope stability problems with a more desirable computational effort,many machine learning(ML)algorithms have been proposed.However,most ML-based techniques require that the training data must be in the same feature space and have the same distribution,and the model may need to be rebuilt when the spatial distribution changes.This paper presents a new ML-based algorithm,which combines the principal component analysis(PCA)-based neural network(NN)and transfer learning(TL)techniques(i.e.PCAeNNeTL)to conduct the stability analysis of slopes with different spatial distributions.The Monte Carlo coupled with finite element simulation is first conducted for data acquisition considering the spatial variability of cohesive strength or friction angle of soils from eight slopes with the same geometry.The PCA method is incorporated into the neural network algorithm(i.e.PCA-NN)to increase the computational efficiency by reducing the input variables.It is found that the PCA-NN algorithm performs well in improving the prediction of slope stability for a given slope in terms of the computational accuracy and computational effort when compared with the other two algorithms(i.e.NN and decision trees,DT).Furthermore,the PCAeNNeTL algorithm shows great potential in assessing the stability of slope even with fewer training data.
基金supported by the State Scholarship Fund organized by the China Scholarship Council(CSC).
文摘Energy transfer is ubiquitous in natural and artificial lightharvesting systems,and coherent energy transfer,a highly efficient energy transfer process,has been accepted to play a vital role in such systems.However,the energy oscillation of coherent energy transfer is exceedingly difficult to capture because of its evanescence due to the interaction with a thermal environment.Here a microscopic quantum model is used to study the time evolution of electrons triggered energy transfer between coherently coupled donoracceptor molecules in scanning tunneling microscope(STM).A series of topics in the plasmonic nanocavity(PNC)coupled donor-acceptor molecules system are discussed,including resonant and nonresonant coherent energy transfer,dephasing assisted energy transfer,PNC coupling strength dependent energy transfer,Fano resonance of coherently coupled donor-acceptor molecules,and polariton-mediated energy transfer.
基金supported in part by the MOST Major Research and Development Project(Grant No.2021YFB2900204)the National Natural Science Foundation of China(NSFC)(Grant No.62201123,No.62132004,No.61971102)+3 种基金China Postdoctoral Science Foundation(Grant No.2022TQ0056)in part by the financial support of the Sichuan Science and Technology Program(Grant No.2022YFH0022)Sichuan Major R&D Project(Grant No.22QYCX0168)the Municipal Government of Quzhou(Grant No.2022D031)。
文摘Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance.
文摘Objective Both sequential embryo transfer(SeET)and double-blastocyst transfer(DBT)can serve as embryo transfer strategies for women with recurrent implantation failure(RIF).This study aims to compare the effects of SeET and DBT on pregnancy outcomes.Methods Totally,261 frozen-thawed embryo transfer cycles of 243 RIF women were included in this multicenter retrospective analysis.According to different embryo quality and transfer strategies,they were divided into four groups:group A,good-quality SeET(GQ-SeET,n=38 cycles);group B,poor-quality or mixed-quality SeET(PQ/MQ-SeET,n=31 cycles);group C,good-quality DBT(GQ-DBT,n=121 cycles);and group D,poor-quality or mixed-quality DBT(PQ/MQ-DBT,n=71 cycles).The main outcome,clinical pregnancy rate,was compared,and the generalized estimating equation(GEE)model was used to correct potential confounders that might impact pregnancy outcomes.Results GQ-DBT achieved a significantly higher clinical pregnancy rate(aOR 2.588,95%CI 1.267–5.284,P=0.009)and live birth rate(aOR 3.082,95%CI 1.482–6.412,P=0.003)than PQ/MQ-DBT.Similarly,the clinical pregnancy rate was significantly higher in GQ-SeET than in PQ/MQ-SeET(aOR 4.047,95%CI 1.218–13.450,P=0.023).The pregnancy outcomes of GQ-SeET were not significantly different from those of GQ-DBT,and the same results were found between PQ/MQ-SeET and PQ/MQ-DBT.Conclusion SeET relative to DBT did not seem to improve pregnancy outcomes for RIF patients if the embryo quality was comparable between the two groups.Better clinical pregnancy outcomes could be obtained by transferring good-quality embryos,no matter whether in SeET or DBT.Embryo quality plays a more important role in pregnancy outcomes for RIF patients.
文摘The visions of Industry 4.0 and 5.0 have reinforced the industrial environment.They have also made artificial intelligence incorporated as a major facilitator.Diagnosing machine faults has become a solid foundation for automatically recognizing machine failure,and thus timely maintenance can ensure safe operations.Transfer learning is a promising solution that can enhance the machine fault diagnosis model by borrowing pre-trained knowledge from the source model and applying it to the target model,which typically involves two datasets.In response to the availability of multiple datasets,this paper proposes using selective and adaptive incremental transfer learning(SA-ITL),which fuses three algorithms,namely,the hybrid selective algorithm,the transferability enhancement algorithm,and the incremental transfer learning algorithm.It is a selective algorithm that enables selecting and ordering appropriate datasets for transfer learning and selecting useful knowledge to avoid negative transfer.The algorithm also adaptively adjusts the portion of training data to balance the learning rate and training time.The proposed algorithm is evaluated and analyzed using ten benchmark datasets.Compared with other algorithms from existing works,SA-ITL improves the accuracy of all datasets.Ablation studies present the accuracy enhancements of the SA-ITL,including the hybrid selective algorithm(1.22%-3.82%),transferability enhancement algorithm(1.91%-4.15%),and incremental transfer learning algorithm(0.605%-2.68%).These also show the benefits of enhancing the target model with heterogeneous image datasets that widen the range of domain selection between source and target domains.
基金supported by the National Key R&D Program of China(2023YFD1701504)the 2115 Talent Development Program of China Agricultural University Fund(1011-00109018)the Beijing Innovation Team of the Modern Agricultural Research System(BAIC08-2023-FQ02)。
文摘Optimizing the intrinsic activity of non-noble metal by precisely tailoring electronic structure offers an appealing way to construct cost-effective catalysts for selective biomass valorization.Herein,we reported a P-doping bifunctional catalyst(Ni-P/mSiO_(2))that achieved 96.6%yield for the hydrogenation rearrangement of furfural to cyclopentanone at mild conditions(1 MPaH_(2),150°C).The turnover frequency of Ni-P/mSiO_(2)was 411.9 h^(-1),which was 3.2-fold than that of Ni/mSiO_(2)(127.2 h^(-1)).Detailed characterizations and differential charge density calculations revealed that the electron-deficient Niδ+species were generated by the electron transfer from Ni to P,which promoted the ring rearrangement reaction.Density functional theory calculations illustrated that the presence of P atoms endowed furfural tilted adsorb on the Ni surface by the C=O group and facilitated the desorption of cyclopentanone.This work unraveled the connection between the localized electronic structures and the catalytic properties,so as to provide a promising reference for designing advanced catalysts for biomass valorization.
基金National Key R&D Program of China (No. 2021YFC2100100)Shanghai Science and Technology Project (No. 21JC1403400, 23JC1402300)。
文摘Leveraging big data analytics and advanced algorithms to accelerate and optimize the process of molecular and materials design, synthesis, and application has revolutionized the field of molecular and materials science, allowing researchers to gain a deeper understanding of material properties and behaviors,leading to the development of new materials that are more efficient and reliable. However, the difficulty in constructing large-scale datasets of new molecules/materials due to the high cost of data acquisition and annotation limits the development of conventional machine learning(ML) approaches. Knowledgereused transfer learning(TL) methods are expected to break this dilemma. The application of TL lowers the data requirements for model training, which makes TL stand out in researches addressing data quality issues. In this review, we summarize recent progress in TL related to molecular and materials. We focus on the application of TL methods for the discovery of advanced molecules/materials, particularly, the construction of TL frameworks for different systems, and how TL can enhance the performance of models. In addition, the challenges of TL are also discussed.
基金supported by the National Natural Science Foundation of China(62333010,61673205).
文摘In the coal-to-ethylene glycol(CTEG)process,precisely estimating quality variables is crucial for process monitoring,optimization,and control.A significant challenge in this regard is relying on offline laboratory analysis to obtain these variables,which often incurs substantial monetary costs and significant time delays.The resulting few-shot learning scenarios present a hurdle to the efficient development of predictive models.To address this issue,our study introduces the transferable adversarial slow feature extraction network(TASF-Net),an innovative approach designed specifically for few-shot quality prediction in the CTEG process.TASF-Net uniquely integrates the slowness principle with a deep Bayesian framework,effectively capturing the nonlinear and inertial characteristics of the CTEG process.Additionally,the model employs a variable attention mechanism to identify quality-related input variables adaptively at each time step.A key strength of TASF-Net lies in its ability to navigate the complex measurement noise,outliers,and system interference typical in CTEG data.Adversarial learning strategy using a min-max game is adopted to improve its robustness and ability to model irregular industrial data accurately and significantly.Furthermore,an incremental refining transfer learning framework is designed to further improve few-shot prediction performance achieved by transferring knowledge from the pretrained model on the source domain to the target domain.The effectiveness and superiority of TASF-Net have been empirically validated using a real-world CTEG dataset.Compared with some state-of-the-art methods,TASF-Net demonstrates exceptional capability in addressing the intricate challenges for few-shot quality prediction in the CTEG process.
基金financial support from the RGC Senior Research Fellowship Scheme(SRFS2122-5S04)General Research Fund(15304322)+1 种基金RGC Postdoctoral Fellowship(PDFS2324-5S10)State Key Laboratory for Ultraprecision Machining Technology(1-BBXR).
文摘The burgeoning interest in flexible electronics necessitates the creation of patterning technology specifically tailored for flexible substrates and complex surface morphologies.Among a variety of patterning techniques,transfer printing emerges as one of the most efficient,cost-effective,and scalable methods.It boasts the ability for high-throughput fabrication of 0–3D micro-and nano-structures on flexible substrates,working in tandem with traditional lithography methods.This review highlights the critical issue of transfer printing:the flawless transfer of devices during the pick-up and printing process.We encapsulate recent advancements in numerous transfer printing techniques,with a particular emphasis on strategies to control adhesion forces at the substrate/device/stamp interfaces.These strategies are employed to meet the requirements of competing fractures for successful pick-up and print processes.The mechanism,advantages,disadvantages,and typical applications of each transfer printing technique will be thoroughly discussed.The conclusion section provides design guidelines and probes potential directions for future advancements.
基金supported by the Guangdong Provincial Science&Technology Project(No.2023A0505050084)the National Natural Science Foundation of China(No.22361132525)+1 种基金the Fundamental Research Funds for the Central Universities(No.2023ZYGXZR002)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01X137).
文摘Mn^(2+)doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nano-crystals(NCs).However,it is still difficult to understand the interplay of Mn^(2+)luminescence and the matrix self-trapped exciton(STE)emission therein.In this study,Mn^(2+)-doped CsCdCl_(3) NCs are prepared by hot injection,in which CsCdCl_(3) is selected because of its unique crystal structure suitable for STE emission.The blue emission at 441 nm of undoped CsCdCl_(3) NCs originates from the defect states in the NCs.Mn^(2+)doping promotes lattice distortion of CsCdCl_(3) and generates bright orange-red light emission at 656 nm.The en-ergy transfer from the STEs of CsCdCl_(3) to the excited levels of the Mn^(2+)ion is confirmed to be a significant factor in achieving efficient luminescence in CsCdCl_(3):Mn^(2+)NCs.This work highlights the crucial role of energy transfer from STEs to Mn^(2+)dopants in Mn^(2+)-doped halide NCs and lays the groundwork for modifying the luminescence of other metal halide perovskite NCs.
基金financially supported by the National Natural Science Foundation of China(Nos.51878577 and 52378463)the Natural Science Foundation of Shandong Provincial,China(No.ZR2022ME042)the School-Enterprise Cooperation Program of China Railway 14th Bureau Group Co.(QTHT-HGLCHSD-00052)。
文摘The semi-rigid pile-supported composite foundation is widely used in highway projects due to its effectiveness in increasing the bearing capacity and stability of foundations.It is crucial to understand the stress distribution across the embankment width and the behaviour of unreinforced foundations.Thus,five centrifuge tests were conducted to examine the bearing and deformation behaviours of NPRS(Non-Connected Piled Raft Systems)and GRPS(GeosyntheticReinforced Pile-Supported systems)with varying substratum stiffness,then a comparative analysis was conducted on embankment settlement,pressures underneath the embankments,and axial forces along the piles.The results indicated that greater substratum stiffness correlates with reduced settlement and deformation at various depths.Deformation occurring 5 meters from the embankment toe includes settlement in NPRS and upward movement in GRPS.The potential sliding surface is primarily located within the embankment in NPRS,whereas it may extend through both the embankment and foundation in GRPS.The pile-soil stress ratio and efficiency in NPRS are higher than in GRPS across the embankment.The axial force borne by end-bearing piles is significantly greater than that by floating piles.As the buried depth increases,the axial force in GRPS initially rises then declines,whereas in NPRS,it remains relatively constant within a certain range before decreasing.This study aids in assessing the applicability of composite foundations in complex railway environments and provides a reference for procedural measures under similar conditions.
基金supported by the National Natural Science Foundation of China (No.21908049,52274298,and 51974114)Hunan Provincial Natural Science Foundation of China (No.2022JJ40035,2020JJ4175,2024JJ4022,2023JJ30277)+2 种基金Science and Technology Talents Lifting Project of Hunan Province (No.2022TJ-N16)Open Fund of State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing (K1:24-09)Postdoctoral Fellowship Program (No.GZC20233205)。
文摘Though Zn-air batteries(ZABs)are one of the most promising system for energy storage and conversion,challenge still persists in its commercial application due to the sluggish kinetics of oxygen reduction/evolution reaction(ORR/OER).Hereby,a polyvinylidene fluoride(PVDF)-assisted pyrolysis strategy is proposed to develop a novel corrugated plate-like bifunctional electrocatalyst using two-dimensional zeolitic imidazolate frameworks(2D ZIF-67)as the precursor.The employed PVDF plays an important role in inheriting the original 2D structure of ZIF-67 and modulating the composition of the final products.As a result,a corrugated plate-like electrocatalyst,high-density Co nanoparticles decorated 2D Co,N,and F tri-doped carbon nanosheets,can be obtained.The acquired electrocatalyst enables efficient active sites and rapid mass transfer simultaneously,thus showing appreciable electrocatalytic performance for rechargeable Zn-air batteries.Undoubtedly,our proposed strategy offers a new perspective to the design of advanced oxygen electrocatalysts.