This research entails the study of heat and mass transfer of nanofluid flow in a fluidized bed dryer used in tea drying processes in presence of induced magnetic field. A mathematical model describing the fluid flow i...This research entails the study of heat and mass transfer of nanofluid flow in a fluidized bed dryer used in tea drying processes in presence of induced magnetic field. A mathematical model describing the fluid flow in a Fluidized bed dryer was developed using the nonlinear partial differential equations. Due to their non-linearity, the equations were solved numerically by use of the finite difference method. The effects of physical flow parameters on velocity, temperature, concentration and magnetic induction profiles were studied and results were presented graphically. From the mathematical analysis, it was deduced that addition of silver nanoparticles into the fluid flow enhanced velocity and temperature profiles. This led to improved heat transfer in the fluidized bed dryer, hence amplifying the tea drying process. Furthermore, it was noted that induced magnetic field tends to decrease the fluid velocity, which results in uniform distribution of heat leading to efficient heat transfer between the tea particles and the fluid, thus improving the drying process. The research findings provide information to industries on ways to optimize thermal performance of fluidized bed dryers.展开更多
In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil h...In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil heat exchanger (HCHE) has been proven to be effective in improving heat transfer due to its large surface area. In this study, HCHE was designed to provide hot air needed for fluidized bed drying processes. The HCHE design model was fabricated and evaluated to study the efficiency of the hot air output for a laboratory fluidized bed dryer. The mathematical model for estimation of the final (output) temperature of air, Taf, passing through the HCHE was developed and validated experimentally. The drying of bitter kola particulates was carried out with a drying temperature of 50C 3C and a bed height-to-bed diameter ratio (H/D) of 1.5. The time taken to dry bitter kola particulates to 0.4% moisture content was 1 hour 45 minutes. Hence, HCHE is recommended for use in the production of hot for laboratory-scale fluidized bed dryers.展开更多
The pebble-bed reactor is one of the most promising designs for the nuclear energy industry. In this paper,a discrete element method-computational fluid dynamics(DEM-CFD) approach that includes thermal conduction, rad...The pebble-bed reactor is one of the most promising designs for the nuclear energy industry. In this paper,a discrete element method-computational fluid dynamics(DEM-CFD) approach that includes thermal conduction, radiation, and natural convection mechanisms was proposed to simulate the thermal-fluid phenomena after the failure of forced circulation cooling system in a pebble-bed core. The whole large-scale packed bed was created using the DEM technique, and the calculated radial porosity of the bed was validated with empirical correlations reported by researchers. To reduce computational costs, a segment of the bed was extracted, which served as a good representative of the large-scale packed bed for CFD calculation. The temperature distributions simulated with two different fluids in this DEM-CFD approach were in good agreement with SANA experimental data. The influence of the natural convection mechanism on heat transfer must be taken into account for coolants with strong convective capacity. The proposed DEM-CFD methodology offers a computationally efficient and widely applied method for understanding the heat transfer process in a pebble-bed core. The method can also be easily extended to assess the passive safety features of newly designed fluoride-salt-cooled pebble-bed reactors.展开更多
A mathematical model, surface-particle-emulsion heat transfer model, ispresented by considering voidage variance in emulsion in the vicinity of an immersed surface. Heattransfer near the surface is treated by disperse...A mathematical model, surface-particle-emulsion heat transfer model, ispresented by considering voidage variance in emulsion in the vicinity of an immersed surface. Heattransfer near the surface is treated by dispersed particles touching the surface and through theemulsion when the distance from the surface is greater than the diameter of a particle. A film withan adjustable thickness which separates particles from the surface is not introduced in this model.The coverage ratio of particles on the surface is calculated by a stochastic model of particlepacking density on a surface. By comparison of theoretical solutions with experimental data fromsome references, the mathematical model shows better qualitative and quantitative prediction forlocal heat transfer coefficients around a horizontal immersed tube in a fluidized bed.展开更多
The rotating packed bed(RPB), mainly including the countercurrent-flow RPB(Counter-RPB) and the crosscurrentflow RPB(Cross-RPB) that are classified from the perspective of gas-liquid contact style, is a novel process ...The rotating packed bed(RPB), mainly including the countercurrent-flow RPB(Counter-RPB) and the crosscurrentflow RPB(Cross-RPB) that are classified from the perspective of gas-liquid contact style, is a novel process intensification device. A significant measurement standard for evaluating the performance of RPB is the mass transfer effect. In order to compare the mass transfer characteristics of Counter-RPB and Cross-RPB with the same size, the liquid volumetric mass transfer coefficient(k_La_e) and effective interfacial area(a_e) were measured under identical operating conditions. Meanwhile, the comparison of comprehensive mass transfer performance was conducted using the ratio of ΔP(pressure drop) to kLae as the standard. Experimental results indicated that kLae and ae increased with the increase in liquid spray density q, gas velocity u, and high gravity factor β. Furthermore, compared with the Cross-RPB, the Counter-RPB has higher liquid volumetric mass transfer coefficient and slightly larger effective interfacial area. The experimental results of comprehensive mass transfer performance showed that the Counter-RPB had higher ΔP/k_La_e than the Cross-RPB with changes in liquid spray density and high gravity factor, and there exists a turning point at 0.71 m/s accompanied by a variation with gas velocity. Moreover, the relative error of experimental value to calculated value, which was computed by the correlative expressions of kLae, was less than 5 %. In conclusion, the mass transfer characteristics of RPB are deeply impacted by the manner in which the flows are established and the Cross-RPB would have a great potential for industrial scale-up applications.展开更多
The rotating packed bed (RPB) with split packing is a novel gas-liquid contactor, which intensifies the mass transfer processes controlled by gas-side resistance. To assess its efficacy, the mass transfer characteri...The rotating packed bed (RPB) with split packing is a novel gas-liquid contactor, which intensifies the mass transfer processes controlled by gas-side resistance. To assess its efficacy, the mass transfer characteristics with adjacent rings in counter-rotation and co-rotation modes in a split packing RPB were studied experimentally. The physical absorption system NH3-H2O was used for characterizing the gas volumetric mass transfer coeffi- cient (kyae) and the effective inteffacial area (ae) was determined by chemical absorption in the CO2-NaOH sys- tem. The variation in kyae and ae with the operating conditions is also investigated. The experimental results indicated that kyae and ae for counter-rotation of the adjacent packing rings in the split packing RPB were higher than those for co-rotation, and both counter-rotation and co-rotation of the split packing RPB were superior over conventional RPBs under the similar ooerating conditions.展开更多
Gas-liquid (G-L) and liquid-solid (L-S) mass transfer coefficients were characterized in a gas-liquid-solid (G-L-S) three-phase magnetically stabilized bed (MSB) using amorphous alloy SRNA-4 as the solid phase. Effect...Gas-liquid (G-L) and liquid-solid (L-S) mass transfer coefficients were characterized in a gas-liquid-solid (G-L-S) three-phase magnetically stabilized bed (MSB) using amorphous alloy SRNA-4 as the solid phase. Effects such as superficial liquid velocity, superficial gas velocity, magnetic strength, liquid viscosity, and particle size were investigated. Experimental results indicated that the G-L volumetric mass transfer coefficients (KLa) increased along with the magnetic strength, superficial gas and liquid velocities. Proper increase of liquid viscosity promoted KLa only in the range of lower liquid viscosity. The external magnetic field made L-S mass transfer coefficients (Ks) in the G-L-S MSB lower than those of conventional fluidized beds. Ks in the MSB almost kept constant as the su- perficial liquid velocity and superficial gas velocity increased and decreased with the liquid viscosity and surface tension, while increased with the particle size Ks showed uniform axial and radial distributions except of small de- creases close to the wall. Dimensionless correlations were established to estimate KLa and Ks of the MSB with SRNA-4 catalysts , which showed the average error of 5.4% and 2.5% respectively.展开更多
The equation for radiation heat transfer in a multiple combustion boiler furnace with nuidized bed and pulverized coal firing is derived from direct calculation of radiation heat transfer.
1 INTRODUCTIONTrickle bed reactors are widely used in the process industry,particularly in petroleumhydroprocessing operations,and have been extensively studied by chemical engineers.In atrickle bed reactor,the gas an...1 INTRODUCTIONTrickle bed reactors are widely used in the process industry,particularly in petroleumhydroprocessing operations,and have been extensively studied by chemical engineers.In atrickle bed reactor,the gas and liquid flow cocurrently down through the packed bedand undergo chemical reactions.However,there exist multiple hydrodynamic stateswhich correspond to either uniform or,in most cases,nonuniform radial distributionof the gas and liquid flows in the packed section.Moreover,the hydrodynamic state展开更多
In this paper, the characteristics of fluid mixing time in a novel extra-loop fluidized bed were studied. The results showed that the mixing time was shortened with the increase of fluid velocity. All the discrete num...In this paper, the characteristics of fluid mixing time in a novel extra-loop fluidized bed were studied. The results showed that the mixing time was shortened with the increase of fluid velocity. All the discrete numbers of the reactor were above 0.2. The serial number n was 2.5 -3.0. It was judged accordingly that the reactor fluid state was continous stirred tank reactor (CSTR) mainly. When the inspiratory capacity increased the mixing time of the reactor was shortened. Thus the air input was beneficial for the fluid mixing. During the three phases mixing process, the mixing time of the reactor could be decreased by the n increase of carrier and air loading together, but the change was not significant. The parameters affecting the reactor fluid state were fluid velocity, inspiratory capacity and carrier. KLa could be increased with the air loading increase, and at the same gas/liquid ratio when the pressure drop was high, KL~ value was increased. The amount of carrier complex influence on KLa. As the carrier loading continued to increase, its value had been dropped but the changes was not significant, and optimization condition was found at above 800 1 000 g carrier loading (pouzzolane) or 600 g PVC. Under gas/liquid ratio of 0.8% -5.2%, KLa was (0.62-1.37)×10^-2· s^-1.展开更多
The hysteresis of gas-liquid mass transfer rate and the corresponding radial liquiddistribution in a trickle bed reactor are measured to provide evidence for the correlation between thesetwo behaviors.Experimental res...The hysteresis of gas-liquid mass transfer rate and the corresponding radial liquiddistribution in a trickle bed reactor are measured to provide evidence for the correlation between thesetwo behaviors.Experimental results indicate that the hysteresis of gas-liquid mass transfer originatesfrom the nonuniformity of the hydrodynamic state of gas-liquid flow and the radial maldistributionof local k<sub>gia</sub> corresponds very well to the radial maldistribution of liquid flow in the bed.The localliquid flow rate is also found to be nonuniform in the azimuthal direction.In view of maldistributedliquid flow even in the pulsing flow regime,the conventional plug flow model seems oversimplifiedfor describing the behavior of a trickle bed.展开更多
文摘This research entails the study of heat and mass transfer of nanofluid flow in a fluidized bed dryer used in tea drying processes in presence of induced magnetic field. A mathematical model describing the fluid flow in a Fluidized bed dryer was developed using the nonlinear partial differential equations. Due to their non-linearity, the equations were solved numerically by use of the finite difference method. The effects of physical flow parameters on velocity, temperature, concentration and magnetic induction profiles were studied and results were presented graphically. From the mathematical analysis, it was deduced that addition of silver nanoparticles into the fluid flow enhanced velocity and temperature profiles. This led to improved heat transfer in the fluidized bed dryer, hence amplifying the tea drying process. Furthermore, it was noted that induced magnetic field tends to decrease the fluid velocity, which results in uniform distribution of heat leading to efficient heat transfer between the tea particles and the fluid, thus improving the drying process. The research findings provide information to industries on ways to optimize thermal performance of fluidized bed dryers.
文摘In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil heat exchanger (HCHE) has been proven to be effective in improving heat transfer due to its large surface area. In this study, HCHE was designed to provide hot air needed for fluidized bed drying processes. The HCHE design model was fabricated and evaluated to study the efficiency of the hot air output for a laboratory fluidized bed dryer. The mathematical model for estimation of the final (output) temperature of air, Taf, passing through the HCHE was developed and validated experimentally. The drying of bitter kola particulates was carried out with a drying temperature of 50C 3C and a bed height-to-bed diameter ratio (H/D) of 1.5. The time taken to dry bitter kola particulates to 0.4% moisture content was 1 hour 45 minutes. Hence, HCHE is recommended for use in the production of hot for laboratory-scale fluidized bed dryers.
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)the Frontier Science Key Program of the Chinese Academy of Sciences(No.QYZDY-SSW-JSC016)
文摘The pebble-bed reactor is one of the most promising designs for the nuclear energy industry. In this paper,a discrete element method-computational fluid dynamics(DEM-CFD) approach that includes thermal conduction, radiation, and natural convection mechanisms was proposed to simulate the thermal-fluid phenomena after the failure of forced circulation cooling system in a pebble-bed core. The whole large-scale packed bed was created using the DEM technique, and the calculated radial porosity of the bed was validated with empirical correlations reported by researchers. To reduce computational costs, a segment of the bed was extracted, which served as a good representative of the large-scale packed bed for CFD calculation. The temperature distributions simulated with two different fluids in this DEM-CFD approach were in good agreement with SANA experimental data. The influence of the natural convection mechanism on heat transfer must be taken into account for coolants with strong convective capacity. The proposed DEM-CFD methodology offers a computationally efficient and widely applied method for understanding the heat transfer process in a pebble-bed core. The method can also be easily extended to assess the passive safety features of newly designed fluoride-salt-cooled pebble-bed reactors.
基金This work was financially supported by the Education Ministry of China
文摘A mathematical model, surface-particle-emulsion heat transfer model, ispresented by considering voidage variance in emulsion in the vicinity of an immersed surface. Heattransfer near the surface is treated by dispersed particles touching the surface and through theemulsion when the distance from the surface is greater than the diameter of a particle. A film withan adjustable thickness which separates particles from the surface is not introduced in this model.The coverage ratio of particles on the surface is calculated by a stochastic model of particlepacking density on a surface. By comparison of theoretical solutions with experimental data fromsome references, the mathematical model shows better qualitative and quantitative prediction forlocal heat transfer coefficients around a horizontal immersed tube in a fluidized bed.
基金supported by the National Key R&D Program of China:The ultra-low emission control technology for coal-fired industrial boilers(2016YFC0204103)the Provincial Key R&D Program of Shanxi:R&D of the coal-fired industrial boiler smoke ultra-low emission technology and equipment(201703D111018)
文摘The rotating packed bed(RPB), mainly including the countercurrent-flow RPB(Counter-RPB) and the crosscurrentflow RPB(Cross-RPB) that are classified from the perspective of gas-liquid contact style, is a novel process intensification device. A significant measurement standard for evaluating the performance of RPB is the mass transfer effect. In order to compare the mass transfer characteristics of Counter-RPB and Cross-RPB with the same size, the liquid volumetric mass transfer coefficient(k_La_e) and effective interfacial area(a_e) were measured under identical operating conditions. Meanwhile, the comparison of comprehensive mass transfer performance was conducted using the ratio of ΔP(pressure drop) to kLae as the standard. Experimental results indicated that kLae and ae increased with the increase in liquid spray density q, gas velocity u, and high gravity factor β. Furthermore, compared with the Cross-RPB, the Counter-RPB has higher liquid volumetric mass transfer coefficient and slightly larger effective interfacial area. The experimental results of comprehensive mass transfer performance showed that the Counter-RPB had higher ΔP/k_La_e than the Cross-RPB with changes in liquid spray density and high gravity factor, and there exists a turning point at 0.71 m/s accompanied by a variation with gas velocity. Moreover, the relative error of experimental value to calculated value, which was computed by the correlative expressions of kLae, was less than 5 %. In conclusion, the mass transfer characteristics of RPB are deeply impacted by the manner in which the flows are established and the Cross-RPB would have a great potential for industrial scale-up applications.
基金the National Natural Science Foundation of China(21376229,21206153)
文摘The rotating packed bed (RPB) with split packing is a novel gas-liquid contactor, which intensifies the mass transfer processes controlled by gas-side resistance. To assess its efficacy, the mass transfer characteristics with adjacent rings in counter-rotation and co-rotation modes in a split packing RPB were studied experimentally. The physical absorption system NH3-H2O was used for characterizing the gas volumetric mass transfer coeffi- cient (kyae) and the effective inteffacial area (ae) was determined by chemical absorption in the CO2-NaOH sys- tem. The variation in kyae and ae with the operating conditions is also investigated. The experimental results indicated that kyae and ae for counter-rotation of the adjacent packing rings in the split packing RPB were higher than those for co-rotation, and both counter-rotation and co-rotation of the split packing RPB were superior over conventional RPBs under the similar ooerating conditions.
基金the National Natural Science Foundation of China (No.20206023, No.20676096)the Special Funds for MajorState Basic Research Program of China (973 Program, 2006CB202500)SINOPEC (X504029).
文摘Gas-liquid (G-L) and liquid-solid (L-S) mass transfer coefficients were characterized in a gas-liquid-solid (G-L-S) three-phase magnetically stabilized bed (MSB) using amorphous alloy SRNA-4 as the solid phase. Effects such as superficial liquid velocity, superficial gas velocity, magnetic strength, liquid viscosity, and particle size were investigated. Experimental results indicated that the G-L volumetric mass transfer coefficients (KLa) increased along with the magnetic strength, superficial gas and liquid velocities. Proper increase of liquid viscosity promoted KLa only in the range of lower liquid viscosity. The external magnetic field made L-S mass transfer coefficients (Ks) in the G-L-S MSB lower than those of conventional fluidized beds. Ks in the MSB almost kept constant as the su- perficial liquid velocity and superficial gas velocity increased and decreased with the liquid viscosity and surface tension, while increased with the particle size Ks showed uniform axial and radial distributions except of small de- creases close to the wall. Dimensionless correlations were established to estimate KLa and Ks of the MSB with SRNA-4 catalysts , which showed the average error of 5.4% and 2.5% respectively.
文摘The equation for radiation heat transfer in a multiple combustion boiler furnace with nuidized bed and pulverized coal firing is derived from direct calculation of radiation heat transfer.
文摘1 INTRODUCTIONTrickle bed reactors are widely used in the process industry,particularly in petroleumhydroprocessing operations,and have been extensively studied by chemical engineers.In atrickle bed reactor,the gas and liquid flow cocurrently down through the packed bedand undergo chemical reactions.However,there exist multiple hydrodynamic stateswhich correspond to either uniform or,in most cases,nonuniform radial distributionof the gas and liquid flows in the packed section.Moreover,the hydrodynamic state
基金Project supported by the Foundation Social European,Republoque Francaise
文摘In this paper, the characteristics of fluid mixing time in a novel extra-loop fluidized bed were studied. The results showed that the mixing time was shortened with the increase of fluid velocity. All the discrete numbers of the reactor were above 0.2. The serial number n was 2.5 -3.0. It was judged accordingly that the reactor fluid state was continous stirred tank reactor (CSTR) mainly. When the inspiratory capacity increased the mixing time of the reactor was shortened. Thus the air input was beneficial for the fluid mixing. During the three phases mixing process, the mixing time of the reactor could be decreased by the n increase of carrier and air loading together, but the change was not significant. The parameters affecting the reactor fluid state were fluid velocity, inspiratory capacity and carrier. KLa could be increased with the air loading increase, and at the same gas/liquid ratio when the pressure drop was high, KL~ value was increased. The amount of carrier complex influence on KLa. As the carrier loading continued to increase, its value had been dropped but the changes was not significant, and optimization condition was found at above 800 1 000 g carrier loading (pouzzolane) or 600 g PVC. Under gas/liquid ratio of 0.8% -5.2%, KLa was (0.62-1.37)×10^-2· s^-1.
基金Supported by the National Natural Science Foundation of China and SINOPEC
文摘The hysteresis of gas-liquid mass transfer rate and the corresponding radial liquiddistribution in a trickle bed reactor are measured to provide evidence for the correlation between thesetwo behaviors.Experimental results indicate that the hysteresis of gas-liquid mass transfer originatesfrom the nonuniformity of the hydrodynamic state of gas-liquid flow and the radial maldistributionof local k<sub>gia</sub> corresponds very well to the radial maldistribution of liquid flow in the bed.The localliquid flow rate is also found to be nonuniform in the azimuthal direction.In view of maldistributedliquid flow even in the pulsing flow regime,the conventional plug flow model seems oversimplifiedfor describing the behavior of a trickle bed.