Owing to their acidity,oxidizing ability and redox reversibility,molybdovanadophosphoric heteropolyacids(H_(n+3)PMo_(12-n)VnO40,abbreviated as PMo_(12-n)Vn) were employed as electron transfer carriers for coupling bio...Owing to their acidity,oxidizing ability and redox reversibility,molybdovanadophosphoric heteropolyacids(H_(n+3)PMo_(12-n)VnO40,abbreviated as PMo_(12-n)Vn) were employed as electron transfer carriers for coupling biomass pretreatment for enzymatic hydrolysis and direct biomass-to-electricity conversion.In this novel coupled process,PMo_(12-n)Vn pretreatment that causes deconstruction of cell wall structure with PMo_(12-n)Vn being simultaneously reduced can be considered as the "charging" process.The reduced PMo_(12-n)Vn are further re-oxidized with release of electrons in a liquid flow fuel cell(LFFC) to generate electricity is the "discharging" process.Several Keggin-type PMo_(12-n)Vn with different degree of vanadium substitution(DSV, namely n) were prepared.Compared to Keggin-type phosphomolybdic acid(PMo_(12)),PMo_(12-n)Vn(n=1-6) showed higher oxidizing ability but poorer redox reversibility.The cellulose enzymatic digestibility of PMo_(12-n)Vn pretreated wheat straw generally decreased with increase in DSV, but xylan enzymatic digestibility generally increased with DSV.PMo_(12) pretreatment of wheat straw at 120℃ obtained the highest enzymatic glucan conversion(EGC) reaching 95%,followed by PMo11V1 pretreatment(85%).Discharging of the reduced heteropolyacids in LFFC showed that vanadium substitution could improve the maximum output power density(Pmax).The highest Pmax was obtained by PMo9 V3(44.7 mW/cm^(2)) when FeCl_(3) was used as a cathode electron carrier,while PMo_(12) achieved the lowest Pmax(27.4 mW/cm^(2)).All the heteropolyacids showed good electrode Faraday efficiency(>95%) and cell discharging efficiency(>93%).The energy efficiency of the coupled process based on the heat values of the products and generated electric energy was in the range of 18%-25% depending on DSV.PMo_(12) and PMo11V1 seem to be the most suitable heteropolyacids to mediate the coupled process.展开更多
In order to improve the survival ability and rapid response ability of the carrier craft,a new rapid transfer alignment method of the strapdown inertial navigation system(SINS) on a rocking base is put forward.In th...In order to improve the survival ability and rapid response ability of the carrier craft,a new rapid transfer alignment method of the strapdown inertial navigation system(SINS) on a rocking base is put forward.In the method,the aircraft carrier does not need any form of movement.Meantime,interfering motions such as rolling,pitching,and yawing motions caused by sea waves are effectively used.Firstly,the deck flexure deformation model is made.Secondly,the state space model of transfer alignment is presented.Finally,the feasibility of this method is validated by the simulation.Simulation results show that the misalignment angle error can be estimated and reach an anticipated precision-0.2 mrad in 5 s,while the deck deformation angle error can be estimated and reach a better precision- 0.1 mrad in 20 s.展开更多
Construction of multi-channels of photo-carrier migration in photocatalysts is favor to boost conversion efficiency of solar energy by promoting the charge separation and transfer.Herein,a ternary ZnIn_(2)S_(4)/g-C_(3...Construction of multi-channels of photo-carrier migration in photocatalysts is favor to boost conversion efficiency of solar energy by promoting the charge separation and transfer.Herein,a ternary ZnIn_(2)S_(4)/g-C_(3)N_(4)/Ti_(3)C_(2) MXene hybrid composed of S-scheme junction integrated Schottky-junction was fabricated using a simple hydrothermal approach.All the components(g-C_(3)N_(4),ZnIn_(2)S_(4) and Ti_(3)C_(2) MXene)demonstrated two-dimensional(2D)nanosheets structure,leading to the formation of a 2D/2D/2D sandwich-like structure with intimate large interface for carrier migration.Furthermore,the photogenerated carriers on the g-C_(3)N_(4) possessed dual transfer channels,including one route in S-scheme transfer mode between the g-C_(3)N_(4) and ZnIn_(2)S_(4) and the other route in Schottky-junction between g-C_(3)N_(4) and Ti_(3)C_(2) MXene.Consequently,a highly efficient carrier separation and transport was realized in the ZnIn_(2)S_(4)/g-C_(3)N_(4)/Ti_(3)C_(2) MXene heterojunction.This ternary sample exhibited wide light response from 200 to 1400 nm and excellent photocatalytic H_(2) evolution of 2452.1μmol∙g^(–1)∙h^(–1),which was 200,3,1.5 and 1.6 times of g-C_(3)N_(4),ZnIn_(2)S_(4),ZnIn_(2)S_(4)/Ti_(3)C_(2) MXene and g-C_(3)N_(4)/ZnIn_(2)S_(4) binary composites.This work offers a paradigm for the rational construction of multi-electron pathways to regulate the charge separation and migration via the introduction of dual-junctions in catalytic system.展开更多
Extensive investigation of the passivating agents has been performed to suppress the perovskite defects.However,very few attentions have been paid to rationally design the passivating agents for the balance of the car...Extensive investigation of the passivating agents has been performed to suppress the perovskite defects.However,very few attentions have been paid to rationally design the passivating agents for the balance of the carrier confinement and transfer in quasi-2D perovskites,which is essential to achieve high-performance perovskite LEDs(PeLEDs).In this work,tributylphosphine oxide(TBPO)with moderate carbon chain length is demonstrated as a decent passivator for the quasi-2D perovskites by strengthening the carrier confinement for massive radiative recombination within the perovskites,and more importantly providing efficient carrier transfer in the quasi-2D perovskites.Benefiting from these interesting optoelectronic properties of TBPO-incorporated perovskites,we achieve high-efficient blue PeLEDs with an external quantum efficiency up to 11.5%and operational stability as long as 41.1 min without any shift of the electroluminescence spectra.Consequently,this work contributes an effective approach to promote the carrier confinement and transfer for high-performance and stable blue PeLEDs.展开更多
Ultrafast time-resolved optical transmissions in purified and as-grown single-walled carbon nanotube films are measured at a temperature of 200K. The signal of the purified sample shows a crossover from photobleaching...Ultrafast time-resolved optical transmissions in purified and as-grown single-walled carbon nanotube films are measured at a temperature of 200K. The signal of the purified sample shows a crossover from photobleaching to photoabsorption. The former and the latter are interpreted as the state filling and the red shift of the π-plasmon, respectively. The signal of the as-grown sample can be perfectly fitted by a single-exponential with a time constant of 232fs. The disappearance of the negative component in the as-grown sample is attributed to the charge transfer between the semiconducting nanotubes and the impurities.展开更多
In this paper, the characteristics of fluid mixing time in a novel extra-loop fluidized bed were studied. The results showed that the mixing time was shortened with the increase of fluid velocity. All the discrete num...In this paper, the characteristics of fluid mixing time in a novel extra-loop fluidized bed were studied. The results showed that the mixing time was shortened with the increase of fluid velocity. All the discrete numbers of the reactor were above 0.2. The serial number n was 2.5 -3.0. It was judged accordingly that the reactor fluid state was continous stirred tank reactor (CSTR) mainly. When the inspiratory capacity increased the mixing time of the reactor was shortened. Thus the air input was beneficial for the fluid mixing. During the three phases mixing process, the mixing time of the reactor could be decreased by the n increase of carrier and air loading together, but the change was not significant. The parameters affecting the reactor fluid state were fluid velocity, inspiratory capacity and carrier. KLa could be increased with the air loading increase, and at the same gas/liquid ratio when the pressure drop was high, KL~ value was increased. The amount of carrier complex influence on KLa. As the carrier loading continued to increase, its value had been dropped but the changes was not significant, and optimization condition was found at above 800 1 000 g carrier loading (pouzzolane) or 600 g PVC. Under gas/liquid ratio of 0.8% -5.2%, KLa was (0.62-1.37)×10^-2· s^-1.展开更多
Semiconductor/metal junctions are widely discussed in photocatalysis.However,there is a notable scarcity of systematic studies focusing on photogenerated charge carrier transfer in such junctions.Herein,CdS/Pt,CdS/Au,...Semiconductor/metal junctions are widely discussed in photocatalysis.However,there is a notable scarcity of systematic studies focusing on photogenerated charge carrier transfer in such junctions.Herein,CdS/Pt,CdS/Au,and CdS/Ag are synthesized to serve as model systems for investigating the charge carrier transfer in semiconductor/metal junctions.Kelvin probe force microscopy is employed to visualize the transfer of photogenerated carriers in these materials.The results show that the electron transfer behavior under illumination is related to the conduction band position of CdS and the Fermi level position of the metal.Moreover,Schottky junctions hinder the transfer of photogenerated electrons from CdS to Pt and Au,whereas ohmic contacts facilitate the transfer of photogenerated electrons from CdS to Ag.This work provides novel insights into the mechanisms governing the transfer of photogenerated carriers in semiconductor/metal junctions.展开更多
基金supported by the National Key Research and Development Program of China(2018YFA0902200)the National Natural Science Foundation of China(No.21878176)。
文摘Owing to their acidity,oxidizing ability and redox reversibility,molybdovanadophosphoric heteropolyacids(H_(n+3)PMo_(12-n)VnO40,abbreviated as PMo_(12-n)Vn) were employed as electron transfer carriers for coupling biomass pretreatment for enzymatic hydrolysis and direct biomass-to-electricity conversion.In this novel coupled process,PMo_(12-n)Vn pretreatment that causes deconstruction of cell wall structure with PMo_(12-n)Vn being simultaneously reduced can be considered as the "charging" process.The reduced PMo_(12-n)Vn are further re-oxidized with release of electrons in a liquid flow fuel cell(LFFC) to generate electricity is the "discharging" process.Several Keggin-type PMo_(12-n)Vn with different degree of vanadium substitution(DSV, namely n) were prepared.Compared to Keggin-type phosphomolybdic acid(PMo_(12)),PMo_(12-n)Vn(n=1-6) showed higher oxidizing ability but poorer redox reversibility.The cellulose enzymatic digestibility of PMo_(12-n)Vn pretreated wheat straw generally decreased with increase in DSV, but xylan enzymatic digestibility generally increased with DSV.PMo_(12) pretreatment of wheat straw at 120℃ obtained the highest enzymatic glucan conversion(EGC) reaching 95%,followed by PMo11V1 pretreatment(85%).Discharging of the reduced heteropolyacids in LFFC showed that vanadium substitution could improve the maximum output power density(Pmax).The highest Pmax was obtained by PMo9 V3(44.7 mW/cm^(2)) when FeCl_(3) was used as a cathode electron carrier,while PMo_(12) achieved the lowest Pmax(27.4 mW/cm^(2)).All the heteropolyacids showed good electrode Faraday efficiency(>95%) and cell discharging efficiency(>93%).The energy efficiency of the coupled process based on the heat values of the products and generated electric energy was in the range of 18%-25% depending on DSV.PMo_(12) and PMo11V1 seem to be the most suitable heteropolyacids to mediate the coupled process.
基金supported by the Photoelectric Control Technology Project of National Defense Science and Technology Key Laboratory of China(20120224006)
文摘In order to improve the survival ability and rapid response ability of the carrier craft,a new rapid transfer alignment method of the strapdown inertial navigation system(SINS) on a rocking base is put forward.In the method,the aircraft carrier does not need any form of movement.Meantime,interfering motions such as rolling,pitching,and yawing motions caused by sea waves are effectively used.Firstly,the deck flexure deformation model is made.Secondly,the state space model of transfer alignment is presented.Finally,the feasibility of this method is validated by the simulation.Simulation results show that the misalignment angle error can be estimated and reach an anticipated precision-0.2 mrad in 5 s,while the deck deformation angle error can be estimated and reach a better precision- 0.1 mrad in 20 s.
文摘Construction of multi-channels of photo-carrier migration in photocatalysts is favor to boost conversion efficiency of solar energy by promoting the charge separation and transfer.Herein,a ternary ZnIn_(2)S_(4)/g-C_(3)N_(4)/Ti_(3)C_(2) MXene hybrid composed of S-scheme junction integrated Schottky-junction was fabricated using a simple hydrothermal approach.All the components(g-C_(3)N_(4),ZnIn_(2)S_(4) and Ti_(3)C_(2) MXene)demonstrated two-dimensional(2D)nanosheets structure,leading to the formation of a 2D/2D/2D sandwich-like structure with intimate large interface for carrier migration.Furthermore,the photogenerated carriers on the g-C_(3)N_(4) possessed dual transfer channels,including one route in S-scheme transfer mode between the g-C_(3)N_(4) and ZnIn_(2)S_(4) and the other route in Schottky-junction between g-C_(3)N_(4) and Ti_(3)C_(2) MXene.Consequently,a highly efficient carrier separation and transport was realized in the ZnIn_(2)S_(4)/g-C_(3)N_(4)/Ti_(3)C_(2) MXene heterojunction.This ternary sample exhibited wide light response from 200 to 1400 nm and excellent photocatalytic H_(2) evolution of 2452.1μmol∙g^(–1)∙h^(–1),which was 200,3,1.5 and 1.6 times of g-C_(3)N_(4),ZnIn_(2)S_(4),ZnIn_(2)S_(4)/Ti_(3)C_(2) MXene and g-C_(3)N_(4)/ZnIn_(2)S_(4) binary composites.This work offers a paradigm for the rational construction of multi-electron pathways to regulate the charge separation and migration via the introduction of dual-junctions in catalytic system.
基金supported by National Key Research and Development Program(No.2017YFE0120400)Equipment fund,Platform Research Fund and feed fund(Grant Nos.2019157209 and 202011159254)+1 种基金University Grant Council of the University of Hong Kong,the General Research Fund(Grant Nos.17200518,17201819,and 17211220)Collaboration Research Fund(C7035-20G)from Hong Kong Special Administrative Region,China,as well as the National Natural Science Foundation of China(Nos.61875082 and 62105231)and the Natural Science Foundation of Jiangsu Province(No.BK20210712)。
文摘Extensive investigation of the passivating agents has been performed to suppress the perovskite defects.However,very few attentions have been paid to rationally design the passivating agents for the balance of the carrier confinement and transfer in quasi-2D perovskites,which is essential to achieve high-performance perovskite LEDs(PeLEDs).In this work,tributylphosphine oxide(TBPO)with moderate carbon chain length is demonstrated as a decent passivator for the quasi-2D perovskites by strengthening the carrier confinement for massive radiative recombination within the perovskites,and more importantly providing efficient carrier transfer in the quasi-2D perovskites.Benefiting from these interesting optoelectronic properties of TBPO-incorporated perovskites,we achieve high-efficient blue PeLEDs with an external quantum efficiency up to 11.5%and operational stability as long as 41.1 min without any shift of the electroluminescence spectra.Consequently,this work contributes an effective approach to promote the carrier confinement and transfer for high-performance and stable blue PeLEDs.
文摘Ultrafast time-resolved optical transmissions in purified and as-grown single-walled carbon nanotube films are measured at a temperature of 200K. The signal of the purified sample shows a crossover from photobleaching to photoabsorption. The former and the latter are interpreted as the state filling and the red shift of the π-plasmon, respectively. The signal of the as-grown sample can be perfectly fitted by a single-exponential with a time constant of 232fs. The disappearance of the negative component in the as-grown sample is attributed to the charge transfer between the semiconducting nanotubes and the impurities.
基金Project supported by the Foundation Social European,Republoque Francaise
文摘In this paper, the characteristics of fluid mixing time in a novel extra-loop fluidized bed were studied. The results showed that the mixing time was shortened with the increase of fluid velocity. All the discrete numbers of the reactor were above 0.2. The serial number n was 2.5 -3.0. It was judged accordingly that the reactor fluid state was continous stirred tank reactor (CSTR) mainly. When the inspiratory capacity increased the mixing time of the reactor was shortened. Thus the air input was beneficial for the fluid mixing. During the three phases mixing process, the mixing time of the reactor could be decreased by the n increase of carrier and air loading together, but the change was not significant. The parameters affecting the reactor fluid state were fluid velocity, inspiratory capacity and carrier. KLa could be increased with the air loading increase, and at the same gas/liquid ratio when the pressure drop was high, KL~ value was increased. The amount of carrier complex influence on KLa. As the carrier loading continued to increase, its value had been dropped but the changes was not significant, and optimization condition was found at above 800 1 000 g carrier loading (pouzzolane) or 600 g PVC. Under gas/liquid ratio of 0.8% -5.2%, KLa was (0.62-1.37)×10^-2· s^-1.
基金supported by the National Key Research and Development Program of China(No.2022YFB3803600)the National Natural Science Foundation of China(Nos.22238009,51932007,U1905215,52073223,22278324,52272290,52173065,and 22202187)+2 种基金the Natural Science Foundation of Hubei Province of China(No.2022CFA001)the National Postdoctoral Program for Innovative Talents(No.BX2021275)the Project funded by China Postdoctoral Science Foundation(No.2022M712957).
文摘Semiconductor/metal junctions are widely discussed in photocatalysis.However,there is a notable scarcity of systematic studies focusing on photogenerated charge carrier transfer in such junctions.Herein,CdS/Pt,CdS/Au,and CdS/Ag are synthesized to serve as model systems for investigating the charge carrier transfer in semiconductor/metal junctions.Kelvin probe force microscopy is employed to visualize the transfer of photogenerated carriers in these materials.The results show that the electron transfer behavior under illumination is related to the conduction band position of CdS and the Fermi level position of the metal.Moreover,Schottky junctions hinder the transfer of photogenerated electrons from CdS to Pt and Au,whereas ohmic contacts facilitate the transfer of photogenerated electrons from CdS to Ag.This work provides novel insights into the mechanisms governing the transfer of photogenerated carriers in semiconductor/metal junctions.