期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
A MoS_2 nanocatalyst with surface-enriched active sites for the heterogeneous transfer hydrogenation of nitroarenes 被引量:1
1
作者 Jia Wang Yajie Zhang +3 位作者 Jiangyong Diao Jiayun Zhang Hongyang Liu Dangsheng Su 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第1期79-87,共9页
A highly efficient and reusable plane‐curved and interlayer‐expanded MoS2nanocatalyst with increased exposure of active sites was prepared.The catalyst was used for the heterogeneous hydrogen transfer reaction of ni... A highly efficient and reusable plane‐curved and interlayer‐expanded MoS2nanocatalyst with increased exposure of active sites was prepared.The catalyst was used for the heterogeneous hydrogen transfer reaction of nitroarenes with hydrazine monohydrate as a reductant under mild reaction conditions without pressure and base,which was different from other hydrogen transfer systems that require the presence of a base(e.g.,propan‐2‐ol/KOH).The sandwiching of carbon between the MoS2nanosheets increased the distance between the layers of MoS2and exposed more Mo sites,resulting in superior catalytic performance compared with that of bulk MoS2catalyst.The active hydrogen(H*)generated from N2H4could directly transfer to the–NO2groups of nitrobenzene to form aniline followed by N2emission,which was confirmed by detecting the gas emission with mass spectrometry during the decomposition of hydrazine or the co‐existence of nitrobenzene and hydrazine.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved. 展开更多
关键词 Molybdenum disulfide Interlayer expansion Hydrogen transfer reaction Nitrobenzene reduction Alkali‐free
下载PDF
Changing the balance of the MTO reaction dual-cycle mechanism: Reactions over ZSM-5 with varying contact times 被引量:8
2
作者 张默之 徐舒涛 +5 位作者 魏迎旭 李金哲 王金棒 张雯娜 高树树 刘中民 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第8期1413-1422,共10页
The methanol to olefins (MTO) reaction was performed over ZSM‐5 zeolite at 300℃ under various methanol weight hourly space velocity (WHSV) values. During these trials, the catalytic perfor‐mance was assessed, i... The methanol to olefins (MTO) reaction was performed over ZSM‐5 zeolite at 300℃ under various methanol weight hourly space velocity (WHSV) values. During these trials, the catalytic perfor‐mance was assessed, in addition to the formation and function of organic compounds retained in the zeolite. Analysis of reaction effluents and confined organics demonstrated a dual‐cycle reaction mechanism when employing ZSM‐5. The extent of the hydrogen transfer reaction, a secondary reac‐tion in the MTO process, varied as the catalyst‐methanol contact time was changed. In addition, 12C/13C‐methanol switch experiments indicated a relationship between the dual‐cycle mechanism and the extent of the hydrogen transfer reaction. Reactions employing a low methanol WHSV in conjunction with a long contact time favored the hydrogen transfer reaction to give alkene products and promoted the generation and accumulation of retained organic species, such as aromatics and methylcyclopentadienes, which enhance the aromatic cycle. When using higher WHSV values, the reduced contact times lessened the extent of the hydrogen transfer reaction and limited the genera‐tion of methylcyclopentadienes and aromatic species. This suppressed the aromatic cycle, such that the alkene cycle became the dominant route during the MTO reaction. 展开更多
关键词 Methanol to olefins Dual-cycle mechanism ZSM-5 Contact time Hydrogen transfer reaction
下载PDF
Tandem nanocatalyst design: putting two step-reaction sites into one location towards enhanced hydrogen transfer reactions 被引量:1
3
作者 Yang You Hao Huang +8 位作者 Keke Mao Song Xia Di Wu Canyu Hu Chao Gao Panyiming Liu Ran Long Xiaojun Wu Yujie Xiong 《Science China Materials》 SCIE EI CSCD 2019年第9期1297-1305,共9页
Efficient tandem reactions on a single catalytic nanostructure would be beneficial to improving chemical transformation efficiency and reducing safety implications. It is imperative to identify the active sites for ea... Efficient tandem reactions on a single catalytic nanostructure would be beneficial to improving chemical transformation efficiency and reducing safety implications. It is imperative to identify the active sites for each single step reaction so that the entire reaction process can be optimized by designing and integrating the sites. Herein, hydrogen transfer reaction is taken as a proof-of-concept demonstration to show that the spatial integration of active sites is important to the catalytic efficiency of the entire process in tandem reactions. We identified specific active sites (i.e., various sites at faces versus corners and edges) for formic acid decomposition and alkene/nitrobenzene hydrogenation-the two steps in hydrogen transfer reactions, by employing three different shapes of Pd nanocrystals in tunable sizes. The investigation reveals that the decomposition of formic acid occurs preferentially at the edge sites of cubic nanocrystal and the plane sites of octahedral/ tetrahedral nanocrystals, while the hydrogenation takes place mainly at the edge sites of both cubic and octahedral/ tetrahedral nanocrystals. The consistency of active edge sites during different step reactions enables cubic nanocrystals to exhibit a higher activity than octahedral nanocrystals in hydrogen transfer reactions, although octahedrons offer comparable activities to cubes in formic acid decomposition and hydrogenation reactions. Guided by these findings, we further improved the overall performance of tandem catalysis by specifically promoting the limiting step through nanocatalyst design. This work provides insights into the rational design of heterogeneous nanocatalysts in tandem reactions. 展开更多
关键词 hydrogen transfer reaction PALLADIUM tandem reaction reactive site hydrogenation
原文传递
Catalyst Innovation for Reducing Olefin Content in MGG Gasoline
4
作者 Yu Daping Qiu Zhonghong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2010年第2期19-21,共3页
In order to reduce the olefin content in gasoline manufactured by the MGG (Maximizing Liquefied Gas and Gasoline) process while retaining the LPG yield, RIPP has developed a novel catalyst consisting of a more pore-... In order to reduce the olefin content in gasoline manufactured by the MGG (Maximizing Liquefied Gas and Gasoline) process while retaining the LPG yield, RIPP has developed a novel catalyst consisting of a more pore-opened matrix and the modified Y-zeolite and the ZRP zeolite modified with metal oxides. Test results have revealed that compared with the commercial catalyst RAG under comparable reaction conditions the reaction conversion rate and product distribution provided by the novel catalyst were similar, but the olefin content in gasoline obtained thereof was decreased with the octane rating unchanged along with a slight reduction of olefin content in the LPG fraction. The hydrothermal stability of the novel catalyst was better than the commercial catalyst RAG. 展开更多
关键词 CATALYST GASOLINE OCTANE hydrogen transfer reaction olefin selectivity
下载PDF
Exact quantum calculations on the collinear hydrogen atom transfer reaction——I. Study on oscillations of the reaction probabilities of Cl+HCl
5
作者 JU Guan-Zhi CHEN De-Zhan 《Acta Chimica Sinica English Edition》 SCIE CAS CSCD 1989年第6期496-503,共1页
1-D quantum calculations of reaction probabilities have been carried out for the col- linear reaction Cl+HCl (v≤3)→ClH (v'≤3)+Cl using hyperspherical coordinates. An LEPS po- tential energy surface with a shallow ... 1-D quantum calculations of reaction probabilities have been carried out for the col- linear reaction Cl+HCl (v≤3)→ClH (v'≤3)+Cl using hyperspherical coordinates. An LEPS po- tential energy surface with a shallow well depth of -3.22 KJ/mol has been used in the calculations. The state-to-state reaction probabilities have been calculated. According to the results obtained we found that the diagonal (v=v') reaction probabilities dominate over the off-diagonal (vv') reaction probabilities and the largest off-diagonal reaction probabilities are smaller than 0.1. The reaction probabilities show oscillation as a function of energy. Dynamic resonances strengthen for the potential energy surface with a well. 展开更多
关键词 Exact quantum calculations on the collinear hydrogen atom transfer reaction HCI Study on oscillations of the reaction probabilities of Cl+HCl
全文增补中
Optimizing geometric configuration of single Zn-N_(4) sites for boosting reciprocal transformation between aromatic alcohols and aldehydes
6
作者 Shengjie Wei Yucheng Jin +7 位作者 Chunlin Lv Chao Lian Zheng Chen Xiao Liang Qinghua Zhang Xin Chen Dongdong Qi Zhi Li 《Nano Research》 SCIE EI CSCD 2023年第7期9132-9141,共10页
It is significant to optimize geometric configuration of metal catalytic sites and boost their catalytic activity.Herein,we synthesized isolated single Zn-N_(4)sites on N-doped carbon(Zn-CN)by pyrolyzing zeolite imida... It is significant to optimize geometric configuration of metal catalytic sites and boost their catalytic activity.Herein,we synthesized isolated single Zn-N_(4)sites on N-doped carbon(Zn-CN)by pyrolyzing zeolite imidazole framework-8(ZIF-8)at different temperatures.For the reciprocal transformation between benzyl alcohol and benzaldehyde,the catalytic activities of Zn-CN catalysts exhibited a volcano-like trend as the pyrolysis temperatures increased.The optimal catalyst was Zn-CN-900,with outstanding catalytic activity exceeding commercial 20 wt.%Pd/C and 20 wt.%Pt/C,promising to substitute the noble metalbased catalysts.X-ray absorption near-edge structure(XANES)measurements and density functional theory(DFT)calculation revealed the gradual transformation from tetrahedral ZnN_(4)sites of ZIF-8 into planar ZnN_(4)sites above 700℃,with the maximum planar ZnN_(4)sites in Zn-CN-900.The stronger adsorption between reactants and planar ZnN_(4)sites facilitated the activation of reactants compared with tetrahedral ZnN_(4)sites.This work will provide valuable insight into rational design of efficient catalysts by optimizing geometric configuration of catalytic sites. 展开更多
关键词 geometric configuration single Zn-N_(4)sites benzyl alcohol oxidation hydrogen transfer reaction
原文传递
Bis(ortho-)chelated Monoanionic Bisphosphinoaryl Ruthenium(II) Complexes: Synthesis, Characterization and Reactivity
7
作者 van KLINK Gerard P. M +3 位作者 DANI Paulo van KOTEN Gerard 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2002年第3期207-213,共7页
Bisphosphinoaryl ruthenium(Ⅱ) compounds are synthesized using two distinctsynthetic routes. One route, direct cycloruthenation, consists of the reaction of the parent arenecompound R-PCHP with [RuCl_2 (PPh_3)_3] in c... Bisphosphinoaryl ruthenium(Ⅱ) compounds are synthesized using two distinctsynthetic routes. One route, direct cycloruthenation, consists of the reaction of the parent arenecompound R-PCHP with [RuCl_2 (PPh_3)_3] in chlorinated solvents. However, this route suffers frommajor drawbacks because HCl is formed as well as free triphenylphoshine. The other route, thetranscyclometalation reaction, involves the interconversion of one cyclometalated ligand metalcomplex, [RuCl (NCN) (PPh_3)], into another complex, [RuCl (R-PCP) (PPh_3)], with concomitantconsumption and formation of the corresponding arenes R-PCHP and NCHN, respectively. 展开更多
关键词 RUTHENIUM transcyclometalation reaction monoanionic terdentate P C P′-bisphosphinoaryl hydrogen transfer reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部