期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Deep Transfer Learning Approach for Addressing Yaw Pose Variation to Improve Face Recognition Performance
1
作者 M.Jayasree K.A.Sunitha +3 位作者 A.Brindha Punna Rajasekhar G.Aravamuthan G.Joselin Retnakumar 《Intelligent Automation & Soft Computing》 2024年第4期745-764,共20页
Identifying faces in non-frontal poses presents a significant challenge for face recognition(FR)systems.In this study,we delved into the impact of yaw pose variations on these systems and devised a robust method for d... Identifying faces in non-frontal poses presents a significant challenge for face recognition(FR)systems.In this study,we delved into the impact of yaw pose variations on these systems and devised a robust method for detecting faces across a wide range of angles from 0°to±90°.We initially selected the most suitable feature vector size by integrating the Dlib,FaceNet(Inception-v2),and“Support Vector Machines(SVM)”+“K-nearest neighbors(KNN)”algorithms.To train and evaluate this feature vector,we used two datasets:the“Labeled Faces in the Wild(LFW)”benchmark data and the“Robust Shape-Based FR System(RSBFRS)”real-time data,which contained face images with varying yaw poses.After selecting the best feature vector,we developed a real-time FR system to handle yaw poses.The proposed FaceNet architecture achieved recognition accuracies of 99.7%and 99.8%for the LFW and RSBFRS datasets,respectively,with 128 feature vector dimensions and minimum Euclidean distance thresholds of 0.06 and 0.12.The FaceNet+SVM and FaceNet+KNN classifiers achieved classification accuracies of 99.26%and 99.44%,respectively.The 128-dimensional embedding vector showed the highest recognition rate among all dimensions.These results demonstrate the effectiveness of our proposed approach in enhancing FR accuracy,particularly in real-world scenarios with varying yaw poses. 展开更多
关键词 Face recognition pose variations transfer learning method yaw poses FaceNet Inception-v2
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部