We focus on the study of the transferred image property in an electromagnetically induced transparency (EIT)system. In our experiment, a triple-peak image is effectively transferred trom a coupling beam to a signal ...We focus on the study of the transferred image property in an electromagnetically induced transparency (EIT)system. In our experiment, a triple-peak image is effectively transferred trom a coupling beam to a signal beam based on the FIT effect. It is found that the transferred image intensity profile of the signal beam is the same as that of the coupling beam while not in phase. Furthermore, the propagation property of the transferred image is studied. Due to the narrowing effect, the transferred image keeps narrowing and maintains the shape well within a certain distance outside of the medium. Our experimental results are in excellent agreement with the theoretical analysis.展开更多
The modulation of electrical properties of MoS_2 has attracted extensive research interest because of its potential applications in electronic and optoelectronic devices.Herein,interfacial charge transfer induced elec...The modulation of electrical properties of MoS_2 has attracted extensive research interest because of its potential applications in electronic and optoelectronic devices.Herein,interfacial charge transfer induced electronic property tuning of MoS_2 are investigated by in situ ultraviolet photoelectron spectroscopy and x-ray photoelectron spectroscopy measurements.A downward band-bending of MoS_2-related electronic states along with the decreasing work function,which are induced by the electron transfer from Cs overlayers to MoS_2,is observed after the functionalization of MoS_2 with Cs,leading to n-type doping.Meanwhile,when MoS_2 is modified with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane(F_4-TCNQ),an upward band-bending of MoS_2-related electronic states along with the increasing work function is observed at the interfaces.This is attributed to the electron depletion within MoS_2 due to the strong electron withdrawing property of F_4-TCNQ,indicating p-type doping of MoS_2.Our findings reveal that surface transfer doping is an effective approach for electronic property tuning of MoS_2 and paves the way to optimize its performance in electronic and optoelectronic devices.展开更多
The aluminum open cell foams have been prepared by the conventional precision casting method to investigate the thermal and acoustic properties.A water heating system and silencers were organized as a first step for i...The aluminum open cell foams have been prepared by the conventional precision casting method to investigate the thermal and acoustic properties.A water heating system and silencers were organized as a first step for its applications.The temperature increase between the top and bottom of the foam became larger as the cell size increased in the heat transfer measurement.Sound absorption ratio of the close cell foams was 60%-100%, whereas the open cell aluminum foam showed only 10%-20% of sound absorption at low frequency.When the prototype electric water heater manufactured by combining aluminum open cell foam with a heater was heated to 100-400℃,the highest temperature of water was in the range of 16-46~C.This suggests that there could be potential for this type of heater to be used as a commercial electric water heater.Sound silencer made with the aluminum open cell foam was applied to exit of exhaustion side at air pressure line.Sound silencing effect of open-celled aluminum foam showed that the noise level went down by introducing smaller cell size foam.展开更多
According to the theory of phononic crystals, the hydraulic pipeline is designed to be a periodic structure composed of steel pipes and hoses to suppress the vibration of the hydraulic system with band gaps. We presen...According to the theory of phononic crystals, the hydraulic pipeline is designed to be a periodic structure composed of steel pipes and hoses to suppress the vibration of the hydraulic system with band gaps. We present theoretical and experimental investigations into the flexural vibration transfer properties of a high-pressure periodic pipe with the force on the inner pipe wall by oii pressure taken into consideration. The results show that the vibration attenuation of periodic pipe decreases along with the elevation of working pressure for the hydraulic system, and the band gaps in low frequency ranges move towards high frequency ranges. The periodic pipe has good vibration attenuation performance in the frequency range below 1000 Hz and the vibration of the hydraulic system is effectively suppressed. A11 the results are validated by experiment. The experimental results show a good agreement with the numerical calculations, thus the flexural vibration transfer properties of the high- pressure periodic pipe can be precisely calculated by taking the fluid structure interaction between the pipe and oil into consideration. This study provides an effective way for the vibration control of the hydraulic system.展开更多
Passive sampling technology has good application prospects for monitoring trace pollutants in aquatic environments.Further research on the sampling mechanism of this technology is essential to improve the measurement ...Passive sampling technology has good application prospects for monitoring trace pollutants in aquatic environments.Further research on the sampling mechanism of this technology is essential to improve the measurement accuracy and extend the application scope of this approach.In this study,adsorption and permeation experiments were performed to investigate the sorption and mass transfer properties of five chiral pharmaceuticals at the enantiomeric level on polyethersulfone(PES)and polytetrafluoroethylene(PTFE)membranes used in a polar organic chemical integrative sampler.Batch adsorption experiments showed that the PES membrane had an adsorption phenomenon for most selected pollutants and an insignificant sorption behavior was observed for all selected pharmaceuticals on the PTFE membrane except for R(S)-fluoxetine.The diffusion coefficients of selected pharmaceuticals onto the PTFE membrane were approximately one order of magnitude higher than those onto the PES membrane.The permeation experiment indicated that under different hydraulic conditions,the change of the relative pollutant concentration through the PTFE membrane for the composite pollutant system was more obvious than that for the single pollutant system,and mass transfer hysteresis exists for both contaminant systems through PES membranes.Using the first-order equation or 3-component model to estimate the overall mass transfer coefficients,the results showed that the overall mass transfer coefficient values of pollutants in the composite pollutant system onto both membranes were higher than those in the single pollutant system.This parameter was mainly influenced by the synergistic effects of the multi-analyte interaction and diminished water boundary layers during the mass transfer process.展开更多
Oxyfluoride glasses were developed with composition 60GeO 2 ·10AlF 3 ·25BaF 2 ·(1.95-x)GdF 3 · 3YbF 3 ·0.05TmF 3 ·xErF 3 (x=0.02,0.05,0.08,0.11,0.14,0.17)in mole percent.Intense blue...Oxyfluoride glasses were developed with composition 60GeO 2 ·10AlF 3 ·25BaF 2 ·(1.95-x)GdF 3 · 3YbF 3 ·0.05TmF 3 ·xErF 3 (x=0.02,0.05,0.08,0.11,0.14,0.17)in mole percent.Intense blue(476 nm),green(524 and 546 nm)and red(658 nm)emissions which identified from the 1G 4 →3H 6 transition of Tm3+and the(2H 11/2 ,4S 3/2 )→4I 15/2 ,4F 9/2 →4I 15/2 transitions of Er3+,respectively,were simultaneously observed under 980 nm excitation at room temperature.The results show that multicolor luminescence including white light can be adjustably tuned by changing doping concentrations of Er3+ion or the excitation power.In addition,the energy transfer processes among Tm3+,Er3+and Yb3+ions,and up-conversion mechanisms are discussed.展开更多
In order to obtain the suitable phase change material(PCM) with low phase change temperature and improve its heat transfer rate, experimental investigation was conducted. Firstly, different mass ratios of lauric aci...In order to obtain the suitable phase change material(PCM) with low phase change temperature and improve its heat transfer rate, experimental investigation was conducted. Firstly, different mass ratios of lauric acid(LA) and stearic acid(SA) eutectic mixtures were prepared and characterized by differential scanning calorimetry(DSC). Then, the performance of eutectic mixture during charging process under different fin widths in vertical condition, and performance during charging and discharging processes under different inlet temperature heat transfer fluid(HTF) in horizontal condition were investigated, respectively. The results revealed that the LA-SA eutectic mixture had the suitable phase change temperature and desired latent heat for low-temperature water floor heating system. Wide fins and high inlet temperature HTF significantly enhanced the transfer rate and decreased the melting time.展开更多
A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface...A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface. It is found that the increased conductivities in both doped and undoped regions help reduce the temperature difference across the wafer surface. However, the doped layer conductivity has little effect on the overall temperature distribution and difference. The temperature level and difference on the top surface drop suddenly when absorption coefficient changes from 104 to 103 m-1. When the absorption coefficient is less or equal to 103 m-1, the temperature level and difference do not change much. The emissivity has the dominant effect on the top surface temperature level and difference. Higher surface emissivity can easily increase the temperature level of the wafer surface. After using the improved property data, the overall temperature level reduces by about 200 K from the basis case. The results will help improve the current understanding of the energy transport in the rapid thermal processing and the wafer temperature monitor and control level.展开更多
Low-level laser therapy (LLLT) or cold laser has been used in medicine for several decades. However, the method utilizes a direct contact of the light beam with a patient. Further research resulted in development of a...Low-level laser therapy (LLLT) or cold laser has been used in medicine for several decades. However, the method utilizes a direct contact of the light beam with a patient. Further research resulted in development of another method that enables remote transmission of the pharmacological properties of a medicament into a human body with the application of low-level laser radiation as the light source. 18 patients with different viral diseases were treated with the antiviral drugs placed into the field formed by the unexplained properties of low-level laser radiation of the “device for transfer of the pharmacological properties of a drug into the patient’s body”. This resulted in improvement of the patient’s condition, the absence of side effects and adverse reactions when using drugs in the proposed device and shortened therapy period for patients with chronic hepatitis C infection and Covid-19 patients. The long-term follow-up of the patients with chronic hepatitis B infection showed that hepatitis B virus remained at low replication levels under the influence of the therapy, which made it possible to avoid such formidable complications of the disease as cirrhosis of the liver and liver cancer.展开更多
Carbon nanotube nanofluids have wide application prospects due to their unique structure and excellent properties.In this study,the thermal conductivity properties of carbon nanotube nanofluids and SiO2/water nanoflui...Carbon nanotube nanofluids have wide application prospects due to their unique structure and excellent properties.In this study,the thermal conductivity properties of carbon nanotube nanofluids and SiO2/water nanofluids were compared and analyzed experimentally using different preparation methods.The physical properties of nanofluids were tested using a Malvern Zetasizer Nano Instrument and a Hot Disk Thermal Constant Analyzer.Combined with field synergy theory analysis of the heat transfer performance of nanofluids,results show that the thermal conductivity of carbon nanotube nanofluids is higher than that of SiO2/water nanofluids,and the thermal conductivity of nanofluid rises with the increase of mass fraction and temperature.Moreover,the synergistic performance of carbon nanotube nanofluids is also superior to that of SiO2/water nanofluids.When the mass fraction of the carbon nanotube nanofluids is 10%and the SiO2/water nanofluids is 8%,their field synergy numbers and heat transfer enhancement factors both reach maximum.From the perspective of the preparation method,the thermal conductivity of nanofluids dispersed by high shear microfluidizer is higher than that by ultrasonic dispersion.This result provides some reference for the selection and use of working substance in a microchannel cooling concentrated photovoltaic and thermal(CPV/T)system.展开更多
Three metal ion bridged self-assembled (SA) films of cis-di(thiocyanato)-bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium were fabricated and characterized by contact angle, UV spectra, cyclic voltammetry and ...Three metal ion bridged self-assembled (SA) films of cis-di(thiocyanato)-bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium were fabricated and characterized by contact angle, UV spectra, cyclic voltammetry and XPS. Their photoinduced electron transfer properties (PETP) were examined. Among the titled systems, the highest steady anodic photocurrent of 1773-1843 nA/cm^2 and the highest quantum yield of 3.2% were achieved. The effects of incident light intensity, bias voltage, and electron donor were also studied. The possible mechanism of electron transfer was proposed. The results reveal that different metal ion in SA films could affect significantly the photoinduced electron transfer property. Our experimental results clearly show that bridging metal ions can play both functional and structural roles in these self-assembled systems. This method of forming functional films can provide a new approach to regulate the property of similar systems.展开更多
Sulfamethoxazole (SMX) is one of the most common detected antibiotics in the environment. In order to study whether SMX can affect behavior and growth and whether these effects could be transferred to the progeny, C...Sulfamethoxazole (SMX) is one of the most common detected antibiotics in the environment. In order to study whether SMX can affect behavior and growth and whether these effects could be transferred to the progeny, Caenorhabditis elegans was exposed at environmentally relevant concentrations for 24, 48, 72 and 96 hr, respectively. After exposure, the exposed parent generation (P0) was measured for behavior and growth indicators, which were presented as percentage of controls (POC). Then their corresponding unexposed progeny (F1) was separated and measured for the same indicators. The lowest POC for P0 after 96 hr-exposure at 100 mg/L were 37.8%, 12.7%, 45.8% and 70.l% for body bending frequency (BBF), reversal movement (RM), Omega turns (OT) and body length (BL), respectively. And F1 suffered defects with the lowest POC as 55.8%, 24.1%, 48.5% and 60.7% for BBF, RM, OT and BL, respectively. Defects in both P0 and F1 showed a time- and concentration-dependent fashion and behavior indicators showed better sensitivity than growth indicator. The observed effects on F1 demonstrated the transferable properties of SMX. Defects of SMX at environmental concentrations suggested that it is necessary to perform further systematical studies on its ecological risk in actual conditions.展开更多
bInstitute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China Solubilities of tetraphenylarsonium tetraphenylborate (Ph 4AsB Ph 4) in water, methanol, ethanol, 1 propanol, 1 butanol, 1 pentanol,...bInstitute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China Solubilities of tetraphenylarsonium tetraphenylborate (Ph 4AsB Ph 4) in water, methanol, ethanol, 1 propanol, 1 butanol, 1 pentanol, 1 hexanol and 1 octanol at T =293.2, 298.2, 303.2 and 308.2 K have been determined by spectrophotometry. The standard transfer Gibbs energy ( Δ tr G 0 w→s ) and entropy ( Δ tr S 0 w→s ) of Ph 4AsBPh 4 from water to the n alkanols at temerature from 293.2 K to 308.2 K have been obtained. Furthermore, the contribution of microscopic interaction to the standard Gibbs energy of transfer for Ph 4AsBPh 4 was calculated and discussed. The results show that the effect of hydrophobic interaction of Ph 4AsBPh 4 on its transfer process is the most important factor. According to the thermodynamical principle, the transfer process of Ph 4AsBPh 4 from water to the n alkanols is the entropy dominanted.展开更多
Nanoparticulate flows occur in a wide range of natural and engineering applications hence have received much attention. The purpose of the present paper is to provide a brief review on the research on the nanoparticul...Nanoparticulate flows occur in a wide range of natural and engineering applications hence have received much attention. The purpose of the present paper is to provide a brief review on the research on the nanoparticulate flow in some aspects which consist of the method of moment for solving the particle population balance equation, penetration efficiency, pressure drop and heat transfer in the turbulent nanoparticulate pipe flow, fluctuating-lattice Boltzrnann model for Brownian motion of nanoparticles.展开更多
Polymer electrolyte fuel cells(PEFCs)being employed in fuel cell electric vehicles(FCEVs)are promising power generators producing electric power from fuel stream via porous electrodes.Structure of carbon paper gas dif...Polymer electrolyte fuel cells(PEFCs)being employed in fuel cell electric vehicles(FCEVs)are promising power generators producing electric power from fuel stream via porous electrodes.Structure of carbon paper gas diffusion layers(GDLs)applying in the porous electrodes can greatly affect the PEFC performance,especially at the cathode side where electrochemical reaction is more sluggish.To discover the role of carbon paper GDL structure on the mass transfer properties,different cathode electrodes with dissimilar structural parameters are simulated via lattice Boltzmann method(LBM).3D contours of oxygen and water vapor concentration through the GDL as well as the 2D contours of current density on the catalyst layer are illustrated and examined.The results indicate that the carbon fiber diameter has a negligible impact on the current density while the impact of carbon paper thickness and porosity is significant.In fact,increasing of carbon paper thickness or porosity leads to lack of cell performance.展开更多
A series of Eu^2+,Tb^3+-codoped Sr3 Y(PO4)3(SYP) green phosphors were synthesized by hightemperature solid-state reaction. Several techniques, such as X-ray diffraction, UV-vis spectrum,and photoluminescence spe...A series of Eu^2+,Tb^3+-codoped Sr3 Y(PO4)3(SYP) green phosphors were synthesized by hightemperature solid-state reaction. Several techniques, such as X-ray diffraction, UV-vis spectrum,and photoluminescence spectrum, were used to investigate the obtained phosphors. The present study investigates in detail photoluminescence excitation and emission properties, energy transfer between the two dopants, and effects of doping ions on optical band gap. SYP:0.05 Eu2+ phosphor shows an intense and broad excitation band ranging from 220 to 400 nm and exhibits a bright green emission band with CIE chromaticity coordinates(0.189, 0.359) under 350 nm excitation. Green emission of SYP:0.03 Tb3+ is intensified by codoping with Eu^2+, and energy transfer mechanism between them is demonstrated to be a dipole-dipole interaction. Upon 350 nm excitation, SYP:Eu^2+,Tb^3+ phosphors exhibits two dominating bands peaking at 466 and 545 nm, which are assigned to 4 f^65 d^1→4 f^7 transition of Eu^2+ ions and ~5 D4→~7 F5 transition of Tb^3+ ions, respectively. Optimal doping concentrations of Eu^2+ and Tb^3+ in the SYP host are 5 mol% and 15 mol%, respectively. Results indicate that SYP:Eu^2+,Tb^3+ phosphors are potentially used as green-emitting phosphors for white light-emitting diodes.展开更多
Micro/nano-porous polymeric material is considered a unique industrial material due to its extremelylow thermal conductivity, low density, and high surface area. Therefore, it is necessary to establishan accurate ther...Micro/nano-porous polymeric material is considered a unique industrial material due to its extremelylow thermal conductivity, low density, and high surface area. Therefore, it is necessary to establishan accurate thermal conductivity prediction model suiting their applicable conditions and provide atheoretical basis for expanding their applications. In this work, the development of the calculationmodel of equivalent thermal conductivity of micro/nano-porous polymeric materials in recent yearsis summarized. Firstly, it reviews the process of establishing the overall equivalent thermal conductivity calculation model for micro/nanoporous polymers. Then, the predicted calculation models ofthermal conductivity are introduced separately according to the conductive and radiative thermalconductivity models. In addition, the thermal conduction part is divided into the gaseous thermalconductivity model, solid thermal conductivity model and gas-solid coupling model. Finally, it isconcluded that, compared with other porous materials, there are few studies on heat transfer of micro/nanoporous polymers, especially on the particular heat transfer mechanisms such as scale effectsat the micro/nanoscale. In particular, the following aspects of porous polymers still need to be furtherstudied: micro scaled thermal radiation, heat transfer characteristics of particular morphologies at thenanoscales, heat transfer mechanism and impact factors of micro/nanoporous polymers. Such studieswould provide a more accurate prediction of thermal conductivity and a broader application in energyconversion and storage systems.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374238,11374239,11534008,11574247 and 11374008the China Postdoctoral Science Foundation under Grant No 2016M592771
文摘We focus on the study of the transferred image property in an electromagnetically induced transparency (EIT)system. In our experiment, a triple-peak image is effectively transferred trom a coupling beam to a signal beam based on the FIT effect. It is found that the transferred image intensity profile of the signal beam is the same as that of the coupling beam while not in phase. Furthermore, the propagation property of the transferred image is studied. Due to the narrowing effect, the transferred image keeps narrowing and maintains the shape well within a certain distance outside of the medium. Our experimental results are in excellent agreement with the theoretical analysis.
基金Supported by the National Natural Science Foundation of China (Grant No.22002031)the Natural Science Foundation of Zhejiang Province (Grant No.LY18F010019)the Innovation Project in Hangzhou for Returned Scholar。
文摘The modulation of electrical properties of MoS_2 has attracted extensive research interest because of its potential applications in electronic and optoelectronic devices.Herein,interfacial charge transfer induced electronic property tuning of MoS_2 are investigated by in situ ultraviolet photoelectron spectroscopy and x-ray photoelectron spectroscopy measurements.A downward band-bending of MoS_2-related electronic states along with the decreasing work function,which are induced by the electron transfer from Cs overlayers to MoS_2,is observed after the functionalization of MoS_2 with Cs,leading to n-type doping.Meanwhile,when MoS_2 is modified with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane(F_4-TCNQ),an upward band-bending of MoS_2-related electronic states along with the increasing work function is observed at the interfaces.This is attributed to the electron depletion within MoS_2 due to the strong electron withdrawing property of F_4-TCNQ,indicating p-type doping of MoS_2.Our findings reveal that surface transfer doping is an effective approach for electronic property tuning of MoS_2 and paves the way to optimize its performance in electronic and optoelectronic devices.
文摘The aluminum open cell foams have been prepared by the conventional precision casting method to investigate the thermal and acoustic properties.A water heating system and silencers were organized as a first step for its applications.The temperature increase between the top and bottom of the foam became larger as the cell size increased in the heat transfer measurement.Sound absorption ratio of the close cell foams was 60%-100%, whereas the open cell aluminum foam showed only 10%-20% of sound absorption at low frequency.When the prototype electric water heater manufactured by combining aluminum open cell foam with a heater was heated to 100-400℃,the highest temperature of water was in the range of 16-46~C.This suggests that there could be potential for this type of heater to be used as a commercial electric water heater.Sound silencer made with the aluminum open cell foam was applied to exit of exhaustion side at air pressure line.Sound silencing effect of open-celled aluminum foam showed that the noise level went down by introducing smaller cell size foam.
文摘According to the theory of phononic crystals, the hydraulic pipeline is designed to be a periodic structure composed of steel pipes and hoses to suppress the vibration of the hydraulic system with band gaps. We present theoretical and experimental investigations into the flexural vibration transfer properties of a high-pressure periodic pipe with the force on the inner pipe wall by oii pressure taken into consideration. The results show that the vibration attenuation of periodic pipe decreases along with the elevation of working pressure for the hydraulic system, and the band gaps in low frequency ranges move towards high frequency ranges. The periodic pipe has good vibration attenuation performance in the frequency range below 1000 Hz and the vibration of the hydraulic system is effectively suppressed. A11 the results are validated by experiment. The experimental results show a good agreement with the numerical calculations, thus the flexural vibration transfer properties of the high- pressure periodic pipe can be precisely calculated by taking the fluid structure interaction between the pipe and oil into consideration. This study provides an effective way for the vibration control of the hydraulic system.
基金supported by the National Natural Science Foundation of China (No.41977377)。
文摘Passive sampling technology has good application prospects for monitoring trace pollutants in aquatic environments.Further research on the sampling mechanism of this technology is essential to improve the measurement accuracy and extend the application scope of this approach.In this study,adsorption and permeation experiments were performed to investigate the sorption and mass transfer properties of five chiral pharmaceuticals at the enantiomeric level on polyethersulfone(PES)and polytetrafluoroethylene(PTFE)membranes used in a polar organic chemical integrative sampler.Batch adsorption experiments showed that the PES membrane had an adsorption phenomenon for most selected pollutants and an insignificant sorption behavior was observed for all selected pharmaceuticals on the PTFE membrane except for R(S)-fluoxetine.The diffusion coefficients of selected pharmaceuticals onto the PTFE membrane were approximately one order of magnitude higher than those onto the PES membrane.The permeation experiment indicated that under different hydraulic conditions,the change of the relative pollutant concentration through the PTFE membrane for the composite pollutant system was more obvious than that for the single pollutant system,and mass transfer hysteresis exists for both contaminant systems through PES membranes.Using the first-order equation or 3-component model to estimate the overall mass transfer coefficients,the results showed that the overall mass transfer coefficient values of pollutants in the composite pollutant system onto both membranes were higher than those in the single pollutant system.This parameter was mainly influenced by the synergistic effects of the multi-analyte interaction and diminished water boundary layers during the mass transfer process.
基金Funded by the National Natural Science Foundation of China (No. 50772045)the Society Development Foundation of Yunnan Province (No. 2007E036M)
文摘Oxyfluoride glasses were developed with composition 60GeO 2 ·10AlF 3 ·25BaF 2 ·(1.95-x)GdF 3 · 3YbF 3 ·0.05TmF 3 ·xErF 3 (x=0.02,0.05,0.08,0.11,0.14,0.17)in mole percent.Intense blue(476 nm),green(524 and 546 nm)and red(658 nm)emissions which identified from the 1G 4 →3H 6 transition of Tm3+and the(2H 11/2 ,4S 3/2 )→4I 15/2 ,4F 9/2 →4I 15/2 transitions of Er3+,respectively,were simultaneously observed under 980 nm excitation at room temperature.The results show that multicolor luminescence including white light can be adjustably tuned by changing doping concentrations of Er3+ion or the excitation power.In addition,the energy transfer processes among Tm3+,Er3+and Yb3+ions,and up-conversion mechanisms are discussed.
基金Funded by the Key Project of National Natural Science Foundation of China(No.51432007)the National Key Research and Development Program of China(No.2016 YFC0700201)+1 种基金the Science,Technology Support Program of Hubei Province(Nos.2014BAA134 and 2015BAA107)the Postdoctoral Fund of China(2017M612629)
文摘In order to obtain the suitable phase change material(PCM) with low phase change temperature and improve its heat transfer rate, experimental investigation was conducted. Firstly, different mass ratios of lauric acid(LA) and stearic acid(SA) eutectic mixtures were prepared and characterized by differential scanning calorimetry(DSC). Then, the performance of eutectic mixture during charging process under different fin widths in vertical condition, and performance during charging and discharging processes under different inlet temperature heat transfer fluid(HTF) in horizontal condition were investigated, respectively. The results revealed that the LA-SA eutectic mixture had the suitable phase change temperature and desired latent heat for low-temperature water floor heating system. Wide fins and high inlet temperature HTF significantly enhanced the transfer rate and decreased the melting time.
基金Project(N110204015)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2012M510075)supported by the China Postdoctoral Science Foundation
文摘A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface. It is found that the increased conductivities in both doped and undoped regions help reduce the temperature difference across the wafer surface. However, the doped layer conductivity has little effect on the overall temperature distribution and difference. The temperature level and difference on the top surface drop suddenly when absorption coefficient changes from 104 to 103 m-1. When the absorption coefficient is less or equal to 103 m-1, the temperature level and difference do not change much. The emissivity has the dominant effect on the top surface temperature level and difference. Higher surface emissivity can easily increase the temperature level of the wafer surface. After using the improved property data, the overall temperature level reduces by about 200 K from the basis case. The results will help improve the current understanding of the energy transport in the rapid thermal processing and the wafer temperature monitor and control level.
文摘Low-level laser therapy (LLLT) or cold laser has been used in medicine for several decades. However, the method utilizes a direct contact of the light beam with a patient. Further research resulted in development of another method that enables remote transmission of the pharmacological properties of a medicament into a human body with the application of low-level laser radiation as the light source. 18 patients with different viral diseases were treated with the antiviral drugs placed into the field formed by the unexplained properties of low-level laser radiation of the “device for transfer of the pharmacological properties of a drug into the patient’s body”. This resulted in improvement of the patient’s condition, the absence of side effects and adverse reactions when using drugs in the proposed device and shortened therapy period for patients with chronic hepatitis C infection and Covid-19 patients. The long-term follow-up of the patients with chronic hepatitis B infection showed that hepatitis B virus remained at low replication levels under the influence of the therapy, which made it possible to avoid such formidable complications of the disease as cirrhosis of the liver and liver cancer.
基金supported by the National Natural Science Foundation of China(NO.51766012)Inner Mongolia Financial Innovation Funding Project in 2017+1 种基金Inner Mongolia Natural Science Foundation of China(NO.2019MS05025)the Inner Mongolia Science and Technology Major Project of China(NO.201905)。
文摘Carbon nanotube nanofluids have wide application prospects due to their unique structure and excellent properties.In this study,the thermal conductivity properties of carbon nanotube nanofluids and SiO2/water nanofluids were compared and analyzed experimentally using different preparation methods.The physical properties of nanofluids were tested using a Malvern Zetasizer Nano Instrument and a Hot Disk Thermal Constant Analyzer.Combined with field synergy theory analysis of the heat transfer performance of nanofluids,results show that the thermal conductivity of carbon nanotube nanofluids is higher than that of SiO2/water nanofluids,and the thermal conductivity of nanofluid rises with the increase of mass fraction and temperature.Moreover,the synergistic performance of carbon nanotube nanofluids is also superior to that of SiO2/water nanofluids.When the mass fraction of the carbon nanotube nanofluids is 10%and the SiO2/water nanofluids is 8%,their field synergy numbers and heat transfer enhancement factors both reach maximum.From the perspective of the preparation method,the thermal conductivity of nanofluids dispersed by high shear microfluidizer is higher than that by ultrasonic dispersion.This result provides some reference for the selection and use of working substance in a microchannel cooling concentrated photovoltaic and thermal(CPV/T)system.
基金Project supported by the National NaturaJ Science Foundation of China (Nos. 20471009, 20573010), the Scientific Research Foundation for the Returned 0verseas Chinese Scholars, State Education Ministry, Excellent Young Scholars Research Fund of Beijing Institute of Technology (No. 000Y07-30).
文摘Three metal ion bridged self-assembled (SA) films of cis-di(thiocyanato)-bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium were fabricated and characterized by contact angle, UV spectra, cyclic voltammetry and XPS. Their photoinduced electron transfer properties (PETP) were examined. Among the titled systems, the highest steady anodic photocurrent of 1773-1843 nA/cm^2 and the highest quantum yield of 3.2% were achieved. The effects of incident light intensity, bias voltage, and electron donor were also studied. The possible mechanism of electron transfer was proposed. The results reveal that different metal ion in SA films could affect significantly the photoinduced electron transfer property. Our experimental results clearly show that bridging metal ions can play both functional and structural roles in these self-assembled systems. This method of forming functional films can provide a new approach to regulate the property of similar systems.
基金supported by the Key Project of Shanghai Natural Science Foundation(No. 08JC1418900)the National Natural Science Foundation of China(No.20777055)the National Major Science and Technology Project:Water Pollution Control and Management(No. 2008ZX07421-001)
文摘Sulfamethoxazole (SMX) is one of the most common detected antibiotics in the environment. In order to study whether SMX can affect behavior and growth and whether these effects could be transferred to the progeny, Caenorhabditis elegans was exposed at environmentally relevant concentrations for 24, 48, 72 and 96 hr, respectively. After exposure, the exposed parent generation (P0) was measured for behavior and growth indicators, which were presented as percentage of controls (POC). Then their corresponding unexposed progeny (F1) was separated and measured for the same indicators. The lowest POC for P0 after 96 hr-exposure at 100 mg/L were 37.8%, 12.7%, 45.8% and 70.l% for body bending frequency (BBF), reversal movement (RM), Omega turns (OT) and body length (BL), respectively. And F1 suffered defects with the lowest POC as 55.8%, 24.1%, 48.5% and 60.7% for BBF, RM, OT and BL, respectively. Defects in both P0 and F1 showed a time- and concentration-dependent fashion and behavior indicators showed better sensitivity than growth indicator. The observed effects on F1 demonstrated the transferable properties of SMX. Defects of SMX at environmental concentrations suggested that it is necessary to perform further systematical studies on its ecological risk in actual conditions.
文摘bInstitute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China Solubilities of tetraphenylarsonium tetraphenylborate (Ph 4AsB Ph 4) in water, methanol, ethanol, 1 propanol, 1 butanol, 1 pentanol, 1 hexanol and 1 octanol at T =293.2, 298.2, 303.2 and 308.2 K have been determined by spectrophotometry. The standard transfer Gibbs energy ( Δ tr G 0 w→s ) and entropy ( Δ tr S 0 w→s ) of Ph 4AsBPh 4 from water to the n alkanols at temerature from 293.2 K to 308.2 K have been obtained. Furthermore, the contribution of microscopic interaction to the standard Gibbs energy of transfer for Ph 4AsBPh 4 was calculated and discussed. The results show that the effect of hydrophobic interaction of Ph 4AsBPh 4 on its transfer process is the most important factor. According to the thermodynamical principle, the transfer process of Ph 4AsBPh 4 from water to the n alkanols is the entropy dominanted.
基金Project supported by the Major Program of National Natural Science Foundation of China(Grant No.11632016)
文摘Nanoparticulate flows occur in a wide range of natural and engineering applications hence have received much attention. The purpose of the present paper is to provide a brief review on the research on the nanoparticulate flow in some aspects which consist of the method of moment for solving the particle population balance equation, penetration efficiency, pressure drop and heat transfer in the turbulent nanoparticulate pipe flow, fluctuating-lattice Boltzrnann model for Brownian motion of nanoparticles.
文摘Polymer electrolyte fuel cells(PEFCs)being employed in fuel cell electric vehicles(FCEVs)are promising power generators producing electric power from fuel stream via porous electrodes.Structure of carbon paper gas diffusion layers(GDLs)applying in the porous electrodes can greatly affect the PEFC performance,especially at the cathode side where electrochemical reaction is more sluggish.To discover the role of carbon paper GDL structure on the mass transfer properties,different cathode electrodes with dissimilar structural parameters are simulated via lattice Boltzmann method(LBM).3D contours of oxygen and water vapor concentration through the GDL as well as the 2D contours of current density on the catalyst layer are illustrated and examined.The results indicate that the carbon fiber diameter has a negligible impact on the current density while the impact of carbon paper thickness and porosity is significant.In fact,increasing of carbon paper thickness or porosity leads to lack of cell performance.
基金Project supported by the National Natural Science Foundation of China(61664002)the Natural Science Foundation of Guangxi Province(2016GXNSFDA380036)
文摘A series of Eu^2+,Tb^3+-codoped Sr3 Y(PO4)3(SYP) green phosphors were synthesized by hightemperature solid-state reaction. Several techniques, such as X-ray diffraction, UV-vis spectrum,and photoluminescence spectrum, were used to investigate the obtained phosphors. The present study investigates in detail photoluminescence excitation and emission properties, energy transfer between the two dopants, and effects of doping ions on optical band gap. SYP:0.05 Eu2+ phosphor shows an intense and broad excitation band ranging from 220 to 400 nm and exhibits a bright green emission band with CIE chromaticity coordinates(0.189, 0.359) under 350 nm excitation. Green emission of SYP:0.03 Tb3+ is intensified by codoping with Eu^2+, and energy transfer mechanism between them is demonstrated to be a dipole-dipole interaction. Upon 350 nm excitation, SYP:Eu^2+,Tb^3+ phosphors exhibits two dominating bands peaking at 466 and 545 nm, which are assigned to 4 f^65 d^1→4 f^7 transition of Eu^2+ ions and ~5 D4→~7 F5 transition of Tb^3+ ions, respectively. Optimal doping concentrations of Eu^2+ and Tb^3+ in the SYP host are 5 mol% and 15 mol%, respectively. Results indicate that SYP:Eu^2+,Tb^3+ phosphors are potentially used as green-emitting phosphors for white light-emitting diodes.
基金the National Natural Science Foundation of China(Nos.51776050 and 51536001).
文摘Micro/nano-porous polymeric material is considered a unique industrial material due to its extremelylow thermal conductivity, low density, and high surface area. Therefore, it is necessary to establishan accurate thermal conductivity prediction model suiting their applicable conditions and provide atheoretical basis for expanding their applications. In this work, the development of the calculationmodel of equivalent thermal conductivity of micro/nano-porous polymeric materials in recent yearsis summarized. Firstly, it reviews the process of establishing the overall equivalent thermal conductivity calculation model for micro/nanoporous polymers. Then, the predicted calculation models ofthermal conductivity are introduced separately according to the conductive and radiative thermalconductivity models. In addition, the thermal conduction part is divided into the gaseous thermalconductivity model, solid thermal conductivity model and gas-solid coupling model. Finally, it isconcluded that, compared with other porous materials, there are few studies on heat transfer of micro/nanoporous polymers, especially on the particular heat transfer mechanisms such as scale effectsat the micro/nanoscale. In particular, the following aspects of porous polymers still need to be furtherstudied: micro scaled thermal radiation, heat transfer characteristics of particular morphologies at thenanoscales, heat transfer mechanism and impact factors of micro/nanoporous polymers. Such studieswould provide a more accurate prediction of thermal conductivity and a broader application in energyconversion and storage systems.