A heat transfer model on the solidification process has been established onthe basis of the technical conditions of the slab caster in No.3 steel works of Wuhan Iron & SteelCorporation, and the temperature field i...A heat transfer model on the solidification process has been established onthe basis of the technical conditions of the slab caster in No.3 steel works of Wuhan Iron & SteelCorporation, and the temperature field in the solidifying slab was calculated which was verified bythe measured slab surface temperature. The influences of the main operating factors includingcasting speed, spray cooling patterns, superheat of melt and slab size on the solidification processwere analyzed and the means of enhancing the slab temperature was brought forward. Raising thecasting speed to 1.3 m/min, controlling the flowrate of secondary cooling water and improving thecooling pattern at the lower segments of secondary cooling zone could improve the slab temperatureeffectively. And the increasing the superheat is adverse to the production of high temperature slab.展开更多
Thin slab casting is used widely in the world. The control of molten steel flow and solidification in the mold is difficult due to the high casting speed and complicated configuration of the mold. Numerical simulation...Thin slab casting is used widely in the world. The control of molten steel flow and solidification in the mold is difficult due to the high casting speed and complicated configuration of the mold. Numerical simulation was carried out to study the fluid flow and heat transfer in the funnel shaped mold. The influence of nozzle design, casting speed and nozzle submersion depth on the flow and temperature fields in the mold was investigated, and guidance for selecting configurations of submerged nozzle was obtained.展开更多
基金This work was financially sponsored by Jiangsu Youth Science Foundation (No.JDQ2001003).
文摘A heat transfer model on the solidification process has been established onthe basis of the technical conditions of the slab caster in No.3 steel works of Wuhan Iron & SteelCorporation, and the temperature field in the solidifying slab was calculated which was verified bythe measured slab surface temperature. The influences of the main operating factors includingcasting speed, spray cooling patterns, superheat of melt and slab size on the solidification processwere analyzed and the means of enhancing the slab temperature was brought forward. Raising thecasting speed to 1.3 m/min, controlling the flowrate of secondary cooling water and improving thecooling pattern at the lower segments of secondary cooling zone could improve the slab temperatureeffectively. And the increasing the superheat is adverse to the production of high temperature slab.
文摘Thin slab casting is used widely in the world. The control of molten steel flow and solidification in the mold is difficult due to the high casting speed and complicated configuration of the mold. Numerical simulation was carried out to study the fluid flow and heat transfer in the funnel shaped mold. The influence of nozzle design, casting speed and nozzle submersion depth on the flow and temperature fields in the mold was investigated, and guidance for selecting configurations of submerged nozzle was obtained.