In this paper, the relationship between the existence of closed geodesics and the volume growth of complete noncompact Riemannian manifolds is studied. First the authors prove a diffeomorphic result of such an n-m2nif...In this paper, the relationship between the existence of closed geodesics and the volume growth of complete noncompact Riemannian manifolds is studied. First the authors prove a diffeomorphic result of such an n-m2nifold with nonnegative sectional curvature, which improves Marenich-Toponogov's theorem. As an application, a rigidity theorem is obtained for nonnegatively curved open manifold which contains a clesed geodesic. Next the authors prove a theorem about the nonexistence of closed geodesics for Riemannian manifolds with sectional curvature bounded from below by a negative constant.展开更多
基金Supported by NSF of Science and Technologe Bureau of Bijie Prefecture of Guizhou Province and the Scientific Research Foundation of Bijie University(2008-06)
基金Project supported by the National Natural Science Foundation of China(Nos.10971055,11171096)the Research Fund for the Doctoral Program of Higher Education of China(No.20104208110002)the Funds for Disciplines Leaders of Wuhan(No.Z201051730002)
文摘In this paper, the relationship between the existence of closed geodesics and the volume growth of complete noncompact Riemannian manifolds is studied. First the authors prove a diffeomorphic result of such an n-m2nifold with nonnegative sectional curvature, which improves Marenich-Toponogov's theorem. As an application, a rigidity theorem is obtained for nonnegatively curved open manifold which contains a clesed geodesic. Next the authors prove a theorem about the nonexistence of closed geodesics for Riemannian manifolds with sectional curvature bounded from below by a negative constant.