A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a...A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model.展开更多
Micro-LEDs(μLEDs)have advantages in terms of brightness,power consumption,and response speed.In addition,they can also be used as micro-sensors implanted in the body via flexible electronic skin.One of the key techni...Micro-LEDs(μLEDs)have advantages in terms of brightness,power consumption,and response speed.In addition,they can also be used as micro-sensors implanted in the body via flexible electronic skin.One of the key techniques involved in the fabrication ofμLED-based devices is transfer printing.Although numerous methods have been proposed for transfer printing,improving the yield ofμLED arrays is still a formidable task.In this paper,we propose a novel method for improving the yield ofμLED arrays transferred by the stamping method,using an innovative design of piezoelectrically driven asymmetric micro-gripper.Traditional grippers are too large to manipulateμLEDs,and therefore two micro-sized cantilevers are added at the gripper tips.AμLED manipulation system is constructed based on the micro-gripper together with a three-dimensional positioning system.Experimental results using this system show that it can be used successfully to manipulateμLED arrays.展开更多
Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is stil...Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the “all-in-one” defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultraactive coordinated environment(M–N_(x), M–C_(2)N_(2), M–O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra(fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C_(3)N_(4) “customization”, motivating more profound thinking and flourishing research outputs on g-C_(3)N_(4)-based photocatalysis.展开更多
Cadmium(Cd)contamination in rice has been a serious threat to human health.To investigate the effects of arbuscular mycorrhizal fungi(AMF)on the Cd translocation in rice,a controlled pot experiment was conducted.The r...Cadmium(Cd)contamination in rice has been a serious threat to human health.To investigate the effects of arbuscular mycorrhizal fungi(AMF)on the Cd translocation in rice,a controlled pot experiment was conducted.The results indicated that AMF significantly increased rice biomass,with an increase of up to 40.0%,particularly in root biomass by up to 68.4%.Notably,the number of prominent rice individuals also increased,and their plasticity was enhanced following AMF inoculation.AMF led to an increase in the net photosynthetic rate and antioxidant enzyme activity of rice.In the AMF treatment group,the Cd concentration in the rice roots was significantly higher(19.1%‒68.0%)compared with that in the control group.Conversely,the Cd concentration in the rice seeds was lower in the AMF treatment group,indicating that AMF facilitated the sequestration of Cd in rice roots and reduced Cd accumulation in the seeds.Path coefficients varied across different treatments,suggesting that AMF inoculation reduced the direct impact of soil Cd concentration on the total Cd accumulation in seeds.The translocation of Cd was consistently associated with simultaneous growth dilution and compensatory accumulation as a result of mycorrhizal effects.Our study quantitatively analyzed this process through path analysis and clarified the causal relationship between rice growth and Cd transfer under the influence of AMF.展开更多
Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing tech...Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing techniques.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)and Lunar Environment heliospheric X-ray Imager(LEXI)missions aim to obtain soft Xray images of near-Earth space thanks to their Soft X-ray Imager(SXI)instruments.While earlier modeling works have already simulated soft X-ray images as might be obtained by SMILE SXI during its mission,the numerical models used so far are all based on the magnetohydrodynamics description of the space plasma.To investigate the possible signatures of ion-kinetic-scale processes in soft Xray images,we use for the first time a global hybrid-Vlasov simulation of the geospace from the Vlasiator model.The simulation is driven by fast and tenuous solar wind conditions and purely southward interplanetary magnetic field.We first produce global X-ray images of the dayside near-Earth space by placing a virtual imaging satellite at two different locations,providing meridional and equatorial views.We then analyze regional features present in the images and show that they correspond to signatures in soft X-ray emissions of mirrormode wave structures in the magnetosheath and flux transfer events(FTEs)at the magnetopause.Our results suggest that,although the time scales associated with the motion of those transient phenomena will likely be significantly smaller than the integration time of the SMILE and LEXI imagers,mirror-mode structures and FTEs can cumulatively produce detectable signatures in the soft X-ray images.For instance,a local increase by 30%in the proton density at the dayside magnetopause resulting from the transit of multiple FTEs leads to a 12%enhancement in the line-of-sight-and time-integrated soft X-ray emissivity originating from this region.Likewise,a proton density increase by 14%in the magnetosheath associated with mirror-mode structures can result in an enhancement in the soft X-ray signal by 4%.These are likely conservative estimates,given that the solar wind conditions used in the Vlasiator run can be expected to generate weaker soft X-ray emissions than the more common denser solar wind.These results will contribute to the preparatory work for the SMILE and LEXI missions by providing the community with quantitative estimates of the effects of small-scale,transient phenomena occurring on the dayside.展开更多
The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation resul...The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection.展开更多
In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,ma...In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,mainly due to the limited time coverage of observations and reanalysis data.Meanwhile,deep learning predictions of sea ice thickness(SIT)have yet to receive ample attention.In this study,two data-driven deep learning(DL)models are built based on the ConvLSTM and fully convolutional U-net(FC-Unet)algorithms and trained using CMIP6 historical simulations for transfer learning and fine-tuned using reanalysis/observations.These models enable monthly predictions of Arctic SIT without considering the complex physical processes involved.Through comprehensive assessments of prediction skills by season and region,the results suggest that using a broader set of CMIP6 data for transfer learning,as well as incorporating multiple climate variables as predictors,contribute to better prediction results,although both DL models can effectively predict the spatiotemporal features of SIT anomalies.Regarding the predicted SIT anomalies of the FC-Unet model,the spatial correlations with reanalysis reach an average level of 89%over all months,while the temporal anomaly correlation coefficients are close to unity in most cases.The models also demonstrate robust performances in predicting SIT and SIE during extreme events.The effectiveness and reliability of the proposed deep transfer learning models in predicting Arctic SIT can facilitate more accurate pan-Arctic predictions,aiding climate change research and real-time business applications.展开更多
We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase lockin...We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme,the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site.This passive scheme exhibits fine robustness and reliability,making it suitable for long-distance and noisy fiber links.An optical regeneration station is used in the link for signal amplification and cascaded transmission.The phase noise cancellation and transfer instability of the 972-km link is investigated,and transfer instability of 1.1×10^(-19)at 10^(4)s is achieved.This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links.展开更多
Post-acute ischemic stroke hyperglycemia increases the risk of hemorrhagic transformation,which is associated with blood-brain barrier disruption.Brain microvascular endothelial cells are a major component of the bloo...Post-acute ischemic stroke hyperglycemia increases the risk of hemorrhagic transformation,which is associated with blood-brain barrier disruption.Brain microvascular endothelial cells are a major component of the blood-brain barrier.Intercellular mitochondrial transfer has emerged as a novel paradigm for repairing cells with mitochondrial dysfunction.In this study,we first investigated whether mitochondrial transfer exists between brain microvascular endothelial cells,and then investigated the effects of post-acute ischemic stroke hyperglycemia on mitochondrial transfer between brain microvascular endothelial cells.We found that healthy brain microvascular endothelial cells can transfer intact mitochondria to oxygen glucose deprivation-injured brain microvascular endothelial cells.However,post-oxygen glucose deprivation hyperglycemia hindered mitochondrial transfer and exacerbated mitochondrial dysfunction.We established an in vitro brain microvascular endothelial cell model of the blood-brain barrier.We found that post-acute ischemic stroke hyperglycemia reduced the overall energy metabolism levels of brain microvascular endothelial cells and increased permeability of the blood-brain barrier.In a clinical study,we retrospectively analyzed the relationship between post-acute ischemic stroke hyperglycemia and the severity of hemorrhagic transformation.We found that post-acute ischemic stroke hyperglycemia serves as an independent predictor of severe hemorrhagic transformation.These findings suggest that post-acute ischemic stroke hyperglycemia can aggravate disruption of the blood-brain barrier by inhibiting mitochondrial transfer.展开更多
BACKGROUND Helicobacter pylori(H.pylori)infection is closely associated with gastrointestinal diseases.Our preliminary studies have indicated that H.pylori infection had a significant impact on the mucosal microbiome ...BACKGROUND Helicobacter pylori(H.pylori)infection is closely associated with gastrointestinal diseases.Our preliminary studies have indicated that H.pylori infection had a significant impact on the mucosal microbiome structure in patients with gastric ulcer(GU)or duodenal ulcer(DU).AIM To investigate the contributions of H.pylori infection and the mucosal microbiome to the pathogenesis and progression of ulcerative diseases.METHODS Patients with H.pylori infection and either GU or DU,and healthy individuals without H.pylori infection were included.Gastric or duodenal mucosal samples was obtained and subjected to metagenomic sequencing.The compositions of the microbial communities and their metabolic functions in the mucosal tissues were analyzed.RESULTS Compared with that in the healthy individuals,the gastric mucosal microbiota in the H.pylori-positive patients with GU was dominated by H.pylori,with signi-ficantly reduced biodiversity.The intergroup differential functions,which were enriched in the H.pylori-positive GU patients,were all derived from H.pylori,particularly those concerning transfer RNA queuosine-modification and the synthesis of demethylmenaquinones or menaquinones.A significant enrichment of the uibE gene was detected in the synthesis pathway.There was no significant difference in microbial diversity between the H.pylori-positive DU patients and healthy controls.CONCLUSION H.pylori infection significantly alters the gastric microbiota structure,diversity,and biological functions,which may be important contributing factors for GU.展开更多
Mutations in mitochondrial DNA(mtDNA)are maternally inherited and have the potential to cause severe disorders.Mitochondrial replacement therapies,including spindle,polar body,and pronuclear transfers,are promising st...Mutations in mitochondrial DNA(mtDNA)are maternally inherited and have the potential to cause severe disorders.Mitochondrial replacement therapies,including spindle,polar body,and pronuclear transfers,are promising strategies for preventing the hereditary transmission of mtDNA diseases.While pronuclear transfer has been used to generate mitochondrial replacement mouse models and human embryos,its application in non-human primates has not been previously reported.In this study,we successfully generated four healthy cynomolgus monkeys(Macaca fascicularis)via female pronuclear transfer.These individuals all survived for more than two years and exhibited minimal mtDNA carryover(3.8%–6.7%),as well as relatively stable mtDNA heteroplasmy dynamics during development.The successful establishment of this nonhuman primate model highlights the considerable potential of pronuclear transfer in reducing the risk of inherited mtDNA diseases and provides a valuable preclinical research model for advancing mitochondrial replacement therapies in humans.展开更多
The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotatio...The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotation is difficult and expensive.The incorrect label annotation produces two negative effects:1)the complex decision boundary of diagnosis models lowers the generalization performance on the target domain,and2)the distribution of target domain samples becomes misaligned with the false-labeled samples.To overcome these negative effects,this article proposes a solution called the label recovery and trajectory designable network(LRTDN).LRTDN consists of three parts.First,a residual network with dual classifiers is to learn features from cross-domain samples.Second,an annotation check module is constructed to generate a label anomaly indicator that could modify the abnormal labels of false-labeled samples in the source domain.With the training of relabeled samples,the complexity of diagnosis model is reduced via semi-supervised learning.Third,the adaptation trajectories are designed for sample distributions across domains.This ensures that the target domain samples are only adapted with the pure-labeled samples.The LRTDN is verified by two case studies,in which the diagnosis knowledge of bearings is transferred across different working conditions as well as different yet related machines.The results show that LRTDN offers a high diagnosis accuracy even in the presence of incorrect annotation.展开更多
This paper proposes an artificial intelligence-based robust information hiding algorithm to address the issue of confidential information being susceptible to noise attacks during transmission.The algorithm we designe...This paper proposes an artificial intelligence-based robust information hiding algorithm to address the issue of confidential information being susceptible to noise attacks during transmission.The algorithm we designed aims to mitigate the impact of various noise attacks on the integrity of secret information during transmission.The method we propose involves encoding secret images into stylized encrypted images and applies adversarial transfer to both the style and content features of the original and embedded data.This process effectively enhances the concealment and imperceptibility of confidential information,thereby improving the security of such information during transmission and reducing security risks.Furthermore,we have designed a specialized attack layer to simulate real-world attacks and common noise scenarios encountered in practical environments.Through adversarial training,the algorithm is strengthened to enhance its resilience against attacks and overall robustness,ensuring better protection against potential threats.Experimental results demonstrate that our proposed algorithm successfully enhances the concealment and unknowability of secret information while maintaining embedding capacity.Additionally,it ensures the quality and fidelity of the stego image.The method we propose not only improves the security and robustness of information hiding technology but also holds practical application value in protecting sensitive data and ensuring the invisibility of confidential information.展开更多
Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate o...Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate of impeller, ventilation, rheological properties and bubble morphology in the reactor. In this perspective, through optimal computational fluid dynamics models and experiments, the relationship between power consumption, volumetric mass transfer rate(kLa) and initial bubble size(d0) was constructed to establish an efficient operation mode for the aeration process of non-Newtonian fluids. It was found that reducing the d0could significantly increase the oxygen mass transfer rate, resulting in an obvious decrease in the ventilation volume and impeller speed. When d0was regulated within 2-5 mm,an optimal kLa could be achieved, and 21% of power consumption could be saved, compared to the case of bubbles with a diameter of 10 mm.展开更多
The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application i...The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures.展开更多
The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-dema...The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-demanding.To assess the slope stability problems with a more desirable computational effort,many machine learning(ML)algorithms have been proposed.However,most ML-based techniques require that the training data must be in the same feature space and have the same distribution,and the model may need to be rebuilt when the spatial distribution changes.This paper presents a new ML-based algorithm,which combines the principal component analysis(PCA)-based neural network(NN)and transfer learning(TL)techniques(i.e.PCAeNNeTL)to conduct the stability analysis of slopes with different spatial distributions.The Monte Carlo coupled with finite element simulation is first conducted for data acquisition considering the spatial variability of cohesive strength or friction angle of soils from eight slopes with the same geometry.The PCA method is incorporated into the neural network algorithm(i.e.PCA-NN)to increase the computational efficiency by reducing the input variables.It is found that the PCA-NN algorithm performs well in improving the prediction of slope stability for a given slope in terms of the computational accuracy and computational effort when compared with the other two algorithms(i.e.NN and decision trees,DT).Furthermore,the PCAeNNeTL algorithm shows great potential in assessing the stability of slope even with fewer training data.展开更多
Multifield coupling is frequently encountered and also an active area of research in geotechnical engineering.In this work,a particle-resolved direct numerical simulation(PR-DNS)technique is extended to simulate parti...Multifield coupling is frequently encountered and also an active area of research in geotechnical engineering.In this work,a particle-resolved direct numerical simulation(PR-DNS)technique is extended to simulate particle-fluid interaction problems involving heat transfer at the grain level.In this extended technique,an immersed moving boundary(IMB)scheme is used to couple the discrete element method(DEM)and lattice Boltzmann method(LBM),while a recently proposed Dirichlet-type thermal boundary condition is also adapted to account for heat transfer between fluid phase and solid particles.The resulting DEM-IBM-LBM model is robust to simulate moving curved boundaries with constant temperature in thermal flows.To facilitate the understanding and implementation of this coupled model for non-isothermal problems,a complete list is given for the conversion of relevant physical variables to lattice units.Then,benchmark tests,including a single-particle sedimentation and a two-particle drafting-kissing-tumbling(DKT)simulation with heat transfer,are carried out to validate the accuracy of our coupled technique.To further investigate the role of heat transfer in particle-laden flows,two multiple-particle problems with heat transfer are performed.Numerical examples demonstrate that the proposed coupling model is a promising high-resolution approach for simulating the heat-particle-fluid coupling at the grain level.展开更多
Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplish...Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization.展开更多
Energy transfer is ubiquitous in natural and artificial lightharvesting systems,and coherent energy transfer,a highly efficient energy transfer process,has been accepted to play a vital role in such systems.However,th...Energy transfer is ubiquitous in natural and artificial lightharvesting systems,and coherent energy transfer,a highly efficient energy transfer process,has been accepted to play a vital role in such systems.However,the energy oscillation of coherent energy transfer is exceedingly difficult to capture because of its evanescence due to the interaction with a thermal environment.Here a microscopic quantum model is used to study the time evolution of electrons triggered energy transfer between coherently coupled donoracceptor molecules in scanning tunneling microscope(STM).A series of topics in the plasmonic nanocavity(PNC)coupled donor-acceptor molecules system are discussed,including resonant and nonresonant coherent energy transfer,dephasing assisted energy transfer,PNC coupling strength dependent energy transfer,Fano resonance of coherently coupled donor-acceptor molecules,and polariton-mediated energy transfer.展开更多
文摘A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model.
基金support from the Scientific Research Program of the Tianjin Education Commission(No.2019ZD08).
文摘Micro-LEDs(μLEDs)have advantages in terms of brightness,power consumption,and response speed.In addition,they can also be used as micro-sensors implanted in the body via flexible electronic skin.One of the key techniques involved in the fabrication ofμLED-based devices is transfer printing.Although numerous methods have been proposed for transfer printing,improving the yield ofμLED arrays is still a formidable task.In this paper,we propose a novel method for improving the yield ofμLED arrays transferred by the stamping method,using an innovative design of piezoelectrically driven asymmetric micro-gripper.Traditional grippers are too large to manipulateμLEDs,and therefore two micro-sized cantilevers are added at the gripper tips.AμLED manipulation system is constructed based on the micro-gripper together with a three-dimensional positioning system.Experimental results using this system show that it can be used successfully to manipulateμLED arrays.
基金the support of the Australia Research Council (ARC) through the Discovery Project (DP230101040)the Natural Science Foundation of Shandong Province (ZR2022QB139, No. ZR2020KF025)+3 种基金the Starting Research Fund (Grant No. 20210122) from the Ludong Universitythe Natural Science Foundation of China (12274190) from the Ludong Universitythe support of the Shandong Youth Innovation Team Introduction and Education Programthe Special Fund for Taishan Scholars Project (No. tsqn202211186) in Shandong Province。
文摘Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the “all-in-one” defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultraactive coordinated environment(M–N_(x), M–C_(2)N_(2), M–O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra(fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C_(3)N_(4) “customization”, motivating more profound thinking and flourishing research outputs on g-C_(3)N_(4)-based photocatalysis.
基金the National Natural Science Foundation of China(Grant No.52270154)the National Engineering Research Center for Bioenergy,Harbin Institute of Technology,China(Grant No.2021C001).
文摘Cadmium(Cd)contamination in rice has been a serious threat to human health.To investigate the effects of arbuscular mycorrhizal fungi(AMF)on the Cd translocation in rice,a controlled pot experiment was conducted.The results indicated that AMF significantly increased rice biomass,with an increase of up to 40.0%,particularly in root biomass by up to 68.4%.Notably,the number of prominent rice individuals also increased,and their plasticity was enhanced following AMF inoculation.AMF led to an increase in the net photosynthetic rate and antioxidant enzyme activity of rice.In the AMF treatment group,the Cd concentration in the rice roots was significantly higher(19.1%‒68.0%)compared with that in the control group.Conversely,the Cd concentration in the rice seeds was lower in the AMF treatment group,indicating that AMF facilitated the sequestration of Cd in rice roots and reduced Cd accumulation in the seeds.Path coefficients varied across different treatments,suggesting that AMF inoculation reduced the direct impact of soil Cd concentration on the total Cd accumulation in seeds.The translocation of Cd was consistently associated with simultaneous growth dilution and compensatory accumulation as a result of mycorrhizal effects.Our study quantitatively analyzed this process through path analysis and clarified the causal relationship between rice growth and Cd transfer under the influence of AMF.
基金the European Research Council for starting grant 200141-QuESpace,with which the Vlasiator model was developedconsolidator grant 682068-PRESTISSIMO awarded for further development of Vlasiator and its use in scientific investigations+4 种基金Academy of Finland grant numbers 338629-AERGELC’H,339756-KIMCHI,336805-FORESAIL,and 335554-ICT-SUNVACThe Academy of Finland also supported this work through the PROFI4 grant(grant number 3189131)support from the NASA grants,80NSSC20K1670 and 80MSFC20C0019the NASA GSFC FY23 IRADHIF funds。
文摘Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing techniques.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)and Lunar Environment heliospheric X-ray Imager(LEXI)missions aim to obtain soft Xray images of near-Earth space thanks to their Soft X-ray Imager(SXI)instruments.While earlier modeling works have already simulated soft X-ray images as might be obtained by SMILE SXI during its mission,the numerical models used so far are all based on the magnetohydrodynamics description of the space plasma.To investigate the possible signatures of ion-kinetic-scale processes in soft Xray images,we use for the first time a global hybrid-Vlasov simulation of the geospace from the Vlasiator model.The simulation is driven by fast and tenuous solar wind conditions and purely southward interplanetary magnetic field.We first produce global X-ray images of the dayside near-Earth space by placing a virtual imaging satellite at two different locations,providing meridional and equatorial views.We then analyze regional features present in the images and show that they correspond to signatures in soft X-ray emissions of mirrormode wave structures in the magnetosheath and flux transfer events(FTEs)at the magnetopause.Our results suggest that,although the time scales associated with the motion of those transient phenomena will likely be significantly smaller than the integration time of the SMILE and LEXI imagers,mirror-mode structures and FTEs can cumulatively produce detectable signatures in the soft X-ray images.For instance,a local increase by 30%in the proton density at the dayside magnetopause resulting from the transit of multiple FTEs leads to a 12%enhancement in the line-of-sight-and time-integrated soft X-ray emissivity originating from this region.Likewise,a proton density increase by 14%in the magnetosheath associated with mirror-mode structures can result in an enhancement in the soft X-ray signal by 4%.These are likely conservative estimates,given that the solar wind conditions used in the Vlasiator run can be expected to generate weaker soft X-ray emissions than the more common denser solar wind.These results will contribute to the preparatory work for the SMILE and LEXI missions by providing the community with quantitative estimates of the effects of small-scale,transient phenomena occurring on the dayside.
基金the National Natural Science Foundation of China(Grant Nos.62227901,12202068)the Civil Aerospace Pre-research Project(Grant No.D020304).
文摘The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection.
基金supported by the National Natural Science Foundation of China(Grant Nos.41976193 and 42176243).
文摘In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,mainly due to the limited time coverage of observations and reanalysis data.Meanwhile,deep learning predictions of sea ice thickness(SIT)have yet to receive ample attention.In this study,two data-driven deep learning(DL)models are built based on the ConvLSTM and fully convolutional U-net(FC-Unet)algorithms and trained using CMIP6 historical simulations for transfer learning and fine-tuned using reanalysis/observations.These models enable monthly predictions of Arctic SIT without considering the complex physical processes involved.Through comprehensive assessments of prediction skills by season and region,the results suggest that using a broader set of CMIP6 data for transfer learning,as well as incorporating multiple climate variables as predictors,contribute to better prediction results,although both DL models can effectively predict the spatiotemporal features of SIT anomalies.Regarding the predicted SIT anomalies of the FC-Unet model,the spatial correlations with reanalysis reach an average level of 89%over all months,while the temporal anomaly correlation coefficients are close to unity in most cases.The models also demonstrate robust performances in predicting SIT and SIE during extreme events.The effectiveness and reliability of the proposed deep transfer learning models in predicting Arctic SIT can facilitate more accurate pan-Arctic predictions,aiding climate change research and real-time business applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12103059,12033007,12303077,and 12303076)the Fund from the Xi’an Science and Technology Bureau,China(Grant No.E019XK1S04)the Fund from the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.1188000XGJ).
文摘We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme,the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site.This passive scheme exhibits fine robustness and reliability,making it suitable for long-distance and noisy fiber links.An optical regeneration station is used in the link for signal amplification and cascaded transmission.The phase noise cancellation and transfer instability of the 972-km link is investigated,and transfer instability of 1.1×10^(-19)at 10^(4)s is achieved.This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links.
基金supported by the Ningbo Public Welfare Science and Technology Program,No.2022S023(to JY)Ningbo Natural Science Foundation,No.2022J211(to JS)+2 种基金Ningbo Medical and Health Brand Discipline,No.PPXK2018-04(to XG)Ningbo Top Medical and Health Research Program,No.2022020304(to XG)Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province,No.2022E10026(to YH)。
文摘Post-acute ischemic stroke hyperglycemia increases the risk of hemorrhagic transformation,which is associated with blood-brain barrier disruption.Brain microvascular endothelial cells are a major component of the blood-brain barrier.Intercellular mitochondrial transfer has emerged as a novel paradigm for repairing cells with mitochondrial dysfunction.In this study,we first investigated whether mitochondrial transfer exists between brain microvascular endothelial cells,and then investigated the effects of post-acute ischemic stroke hyperglycemia on mitochondrial transfer between brain microvascular endothelial cells.We found that healthy brain microvascular endothelial cells can transfer intact mitochondria to oxygen glucose deprivation-injured brain microvascular endothelial cells.However,post-oxygen glucose deprivation hyperglycemia hindered mitochondrial transfer and exacerbated mitochondrial dysfunction.We established an in vitro brain microvascular endothelial cell model of the blood-brain barrier.We found that post-acute ischemic stroke hyperglycemia reduced the overall energy metabolism levels of brain microvascular endothelial cells and increased permeability of the blood-brain barrier.In a clinical study,we retrospectively analyzed the relationship between post-acute ischemic stroke hyperglycemia and the severity of hemorrhagic transformation.We found that post-acute ischemic stroke hyperglycemia serves as an independent predictor of severe hemorrhagic transformation.These findings suggest that post-acute ischemic stroke hyperglycemia can aggravate disruption of the blood-brain barrier by inhibiting mitochondrial transfer.
基金Supported by Wenling Science and Technology Program,China,No.2020S0180101Science and Technology Program of Traditional Chinese Medicine in Zhejiang Province,China,No.2023ZL784.
文摘BACKGROUND Helicobacter pylori(H.pylori)infection is closely associated with gastrointestinal diseases.Our preliminary studies have indicated that H.pylori infection had a significant impact on the mucosal microbiome structure in patients with gastric ulcer(GU)or duodenal ulcer(DU).AIM To investigate the contributions of H.pylori infection and the mucosal microbiome to the pathogenesis and progression of ulcerative diseases.METHODS Patients with H.pylori infection and either GU or DU,and healthy individuals without H.pylori infection were included.Gastric or duodenal mucosal samples was obtained and subjected to metagenomic sequencing.The compositions of the microbial communities and their metabolic functions in the mucosal tissues were analyzed.RESULTS Compared with that in the healthy individuals,the gastric mucosal microbiota in the H.pylori-positive patients with GU was dominated by H.pylori,with signi-ficantly reduced biodiversity.The intergroup differential functions,which were enriched in the H.pylori-positive GU patients,were all derived from H.pylori,particularly those concerning transfer RNA queuosine-modification and the synthesis of demethylmenaquinones or menaquinones.A significant enrichment of the uibE gene was detected in the synthesis pathway.There was no significant difference in microbial diversity between the H.pylori-positive DU patients and healthy controls.CONCLUSION H.pylori infection significantly alters the gastric microbiota structure,diversity,and biological functions,which may be important contributing factors for GU.
基金supported by the National Natural Science Foundation of China (82021001,31825018)National Key Research and Development Program of China (2022YFF0710901)+3 种基金Shanghai Municipal Science and Technology Major Project (2018SHZDZX05)Strategic Priority Research Program of the Chinese Academy of Sciences (XDB32060100)Biological Resources Program of Chinese Academy of Sciences (KFJ-BRP-005)National Science and Technology Innovation 2030 Major Program 2021ZD0200900。
文摘Mutations in mitochondrial DNA(mtDNA)are maternally inherited and have the potential to cause severe disorders.Mitochondrial replacement therapies,including spindle,polar body,and pronuclear transfers,are promising strategies for preventing the hereditary transmission of mtDNA diseases.While pronuclear transfer has been used to generate mitochondrial replacement mouse models and human embryos,its application in non-human primates has not been previously reported.In this study,we successfully generated four healthy cynomolgus monkeys(Macaca fascicularis)via female pronuclear transfer.These individuals all survived for more than two years and exhibited minimal mtDNA carryover(3.8%–6.7%),as well as relatively stable mtDNA heteroplasmy dynamics during development.The successful establishment of this nonhuman primate model highlights the considerable potential of pronuclear transfer in reducing the risk of inherited mtDNA diseases and provides a valuable preclinical research model for advancing mitochondrial replacement therapies in humans.
基金the National Key R&D Program of China(2022YFB3402100)the National Science Fund for Distinguished Young Scholars of China(52025056)+4 种基金the National Natural Science Foundation of China(52305129)the China Postdoctoral Science Foundation(2023M732789)the China Postdoctoral Innovative Talents Support Program(BX20230290)the Open Foundation of Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment(2022JXKF JJ01)the Fundamental Research Funds for Central Universities。
文摘The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotation is difficult and expensive.The incorrect label annotation produces two negative effects:1)the complex decision boundary of diagnosis models lowers the generalization performance on the target domain,and2)the distribution of target domain samples becomes misaligned with the false-labeled samples.To overcome these negative effects,this article proposes a solution called the label recovery and trajectory designable network(LRTDN).LRTDN consists of three parts.First,a residual network with dual classifiers is to learn features from cross-domain samples.Second,an annotation check module is constructed to generate a label anomaly indicator that could modify the abnormal labels of false-labeled samples in the source domain.With the training of relabeled samples,the complexity of diagnosis model is reduced via semi-supervised learning.Third,the adaptation trajectories are designed for sample distributions across domains.This ensures that the target domain samples are only adapted with the pure-labeled samples.The LRTDN is verified by two case studies,in which the diagnosis knowledge of bearings is transferred across different working conditions as well as different yet related machines.The results show that LRTDN offers a high diagnosis accuracy even in the presence of incorrect annotation.
基金the National Natural Science Foundation of China(Nos.62272478,61872384)Natural Science Foundation of Shanxi Province(No.2023-JC-YB-584)+1 种基金National Natural Science Foundation of China(No.62172436)Engineering University of PAP’s Funding for Scientific Research Innovation Team,Engineering University of PAP’s Funding for Key Researcher(No.KYGG202011).
文摘This paper proposes an artificial intelligence-based robust information hiding algorithm to address the issue of confidential information being susceptible to noise attacks during transmission.The algorithm we designed aims to mitigate the impact of various noise attacks on the integrity of secret information during transmission.The method we propose involves encoding secret images into stylized encrypted images and applies adversarial transfer to both the style and content features of the original and embedded data.This process effectively enhances the concealment and imperceptibility of confidential information,thereby improving the security of such information during transmission and reducing security risks.Furthermore,we have designed a specialized attack layer to simulate real-world attacks and common noise scenarios encountered in practical environments.Through adversarial training,the algorithm is strengthened to enhance its resilience against attacks and overall robustness,ensuring better protection against potential threats.Experimental results demonstrate that our proposed algorithm successfully enhances the concealment and unknowability of secret information while maintaining embedding capacity.Additionally,it ensures the quality and fidelity of the stego image.The method we propose not only improves the security and robustness of information hiding technology but also holds practical application value in protecting sensitive data and ensuring the invisibility of confidential information.
基金financial support of the National Natural Science Foundation of China(21776122).
文摘Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate of impeller, ventilation, rheological properties and bubble morphology in the reactor. In this perspective, through optimal computational fluid dynamics models and experiments, the relationship between power consumption, volumetric mass transfer rate(kLa) and initial bubble size(d0) was constructed to establish an efficient operation mode for the aeration process of non-Newtonian fluids. It was found that reducing the d0could significantly increase the oxygen mass transfer rate, resulting in an obvious decrease in the ventilation volume and impeller speed. When d0was regulated within 2-5 mm,an optimal kLa could be achieved, and 21% of power consumption could be saved, compared to the case of bubbles with a diameter of 10 mm.
基金the support of the National Natural Science Foundation of China grant number 51776175。
文摘The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures.
基金supported by the National Natural Science Foundation of China(Grant No.52008402)the Central South University autonomous exploration project(Grant No.2021zzts0790).
文摘The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-demanding.To assess the slope stability problems with a more desirable computational effort,many machine learning(ML)algorithms have been proposed.However,most ML-based techniques require that the training data must be in the same feature space and have the same distribution,and the model may need to be rebuilt when the spatial distribution changes.This paper presents a new ML-based algorithm,which combines the principal component analysis(PCA)-based neural network(NN)and transfer learning(TL)techniques(i.e.PCAeNNeTL)to conduct the stability analysis of slopes with different spatial distributions.The Monte Carlo coupled with finite element simulation is first conducted for data acquisition considering the spatial variability of cohesive strength or friction angle of soils from eight slopes with the same geometry.The PCA method is incorporated into the neural network algorithm(i.e.PCA-NN)to increase the computational efficiency by reducing the input variables.It is found that the PCA-NN algorithm performs well in improving the prediction of slope stability for a given slope in terms of the computational accuracy and computational effort when compared with the other two algorithms(i.e.NN and decision trees,DT).Furthermore,the PCAeNNeTL algorithm shows great potential in assessing the stability of slope even with fewer training data.
基金financially supported by the Natural Science Foundation of Hunan Province,China(Grant No.2022JJ30567)the support of EPSRC Grant(UK):PURIFY(EP/V000756/1)the Scientific Research Foundation of Education Department of Hunan Province,China(Grant No.20B557).
文摘Multifield coupling is frequently encountered and also an active area of research in geotechnical engineering.In this work,a particle-resolved direct numerical simulation(PR-DNS)technique is extended to simulate particle-fluid interaction problems involving heat transfer at the grain level.In this extended technique,an immersed moving boundary(IMB)scheme is used to couple the discrete element method(DEM)and lattice Boltzmann method(LBM),while a recently proposed Dirichlet-type thermal boundary condition is also adapted to account for heat transfer between fluid phase and solid particles.The resulting DEM-IBM-LBM model is robust to simulate moving curved boundaries with constant temperature in thermal flows.To facilitate the understanding and implementation of this coupled model for non-isothermal problems,a complete list is given for the conversion of relevant physical variables to lattice units.Then,benchmark tests,including a single-particle sedimentation and a two-particle drafting-kissing-tumbling(DKT)simulation with heat transfer,are carried out to validate the accuracy of our coupled technique.To further investigate the role of heat transfer in particle-laden flows,two multiple-particle problems with heat transfer are performed.Numerical examples demonstrate that the proposed coupling model is a promising high-resolution approach for simulating the heat-particle-fluid coupling at the grain level.
文摘Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization.
基金supported by the State Scholarship Fund organized by the China Scholarship Council(CSC).
文摘Energy transfer is ubiquitous in natural and artificial lightharvesting systems,and coherent energy transfer,a highly efficient energy transfer process,has been accepted to play a vital role in such systems.However,the energy oscillation of coherent energy transfer is exceedingly difficult to capture because of its evanescence due to the interaction with a thermal environment.Here a microscopic quantum model is used to study the time evolution of electrons triggered energy transfer between coherently coupled donoracceptor molecules in scanning tunneling microscope(STM).A series of topics in the plasmonic nanocavity(PNC)coupled donor-acceptor molecules system are discussed,including resonant and nonresonant coherent energy transfer,dephasing assisted energy transfer,PNC coupling strength dependent energy transfer,Fano resonance of coherently coupled donor-acceptor molecules,and polariton-mediated energy transfer.