期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
Theoretical Investigation on Triplet Excitation Energy Transfer in Fluorene Dimer
1
作者 司玉冰 钟欣欣 +1 位作者 张伟伟 赵仪 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第5期538-546,I0003,共10页
Triplet-triplet energy transfer in fluorene dimer with electronic structure calculations. The two is investigated by combining rate theories key parameters for the control of energy transfer, electronic coupling and r... Triplet-triplet energy transfer in fluorene dimer with electronic structure calculations. The two is investigated by combining rate theories key parameters for the control of energy transfer, electronic coupling and reorganization energy, are calculated based on the diabatic states constructed by the constrained density functional theory. The fluctuation of the electronic coupling is further revealed by molecular dynamics simulation. Succeedingly, the diagonal and off-diagonal fluctuations of the Hamiltonian are mapped from the correlation functions of those parameters, and the rate is then estimated both from the perturbation theory and wavepacket diffusion method. The results manifest that both the static and dynamic fluctuations enhance the rate significantly, but the rate from the dynamic fluctuation is smaller than that from the static fluctuation. 展开更多
关键词 Triplet excitation energy transfer Constrained density functional theory Marcus formula Wavepacket diffusion method
下载PDF
Dielectronic recombination and resonant transfer excitation processes for helium-like krypton 被引量:1
2
作者 胡骁骊 屈一至 +1 位作者 张松斌 张宇 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期220-226,共7页
The relativistic configuration interaction method is employed to calculate the dielectronic recombination(DR) cross sections of helium-like krypton via the 1s2lnl '(n = 2,3,...,15) resonances.Then,the resonant tr... The relativistic configuration interaction method is employed to calculate the dielectronic recombination(DR) cross sections of helium-like krypton via the 1s2lnl '(n = 2,3,...,15) resonances.Then,the resonant transfer excitation(RTE) processes of Kr 34+ colliding with H,He,H 2,and CH x(x = 0-4) targets are investigated under the impulse approximation.The needed Compton profiles of targets are obtained from the Hartree-Fock wave functions.The RTE cross sections are strongly dependent on DR resonant energies and strengths,and the electron momentum distributions of the target.For H 2 and H targets,the ratio of their RTE cross sections changes from 1.85 for the 1s2l2l ' to 1.88 for other resonances,which demonstrates the weak molecular effects on the Compton profiles of H 2.For CH x(x = 0-4) targets,the main contribution to the RTE cross section comes from the carbon atom since carbon carries 6 electrons;as the number of hydrogen increases in CH x,the RTE cross section almost increases by the same value,displaying the strong separate atom character for the hydrogen.However,further comparison of the individual orbital contributions of C(2p,2s,1s) and CH 4(1t 2,2a 1,1a 1) to the RTE cross sections shows that the molecular effects induce differences of about 25.1%,19.9%,and 0.2% between 2p-1t 2,2s-2a 1,and 1s-1a 1 orbitals,respectively. 展开更多
关键词 dielectronic recombination Compton profile resonant transfer excitation
下载PDF
Vibration-assisted coherent excitation energy transfer in a detuned dimer
3
作者 王信 陈浩 +1 位作者 李晨宇 李宏荣 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期465-473,共9页
The important role of high-energy intramolecular vibrational modes for excitation energy transfer in the detuned photosynthetic systems is studied. Based on a basic dimer model which consists of two two-level systems ... The important role of high-energy intramolecular vibrational modes for excitation energy transfer in the detuned photosynthetic systems is studied. Based on a basic dimer model which consists of two two-level systems (pigments) coupled to high-energy vibrational modes, we find that the high-energy intramolecular vibrational modes can enhance the energy transfer with new coherent transfer channels being opened when the phonon energy matches the detuning between the two pigments. As a result, the energy can be effectively transferred into the acceptor. The effective Hamiltonian is obtained to reveal the strong coherent energy exchange among the donor, the acceptor, and the high-energy intramolecular. A semi-classical explanation of the phonon-assisted mechanism is also shown. 展开更多
关键词 excitation energy transfer high-energy intramolecular vibrational motion dynamically resonantcoherent transfer
下载PDF
Motion-Enhanced Quantum Entanglement in the Dynamics of Excitation Transfer
4
作者 宋伟 黄怿晟 +1 位作者 杨名 曹卓良 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第8期212-215,共4页
We investigate the dynamics of entanglement in the excitation transfer through a model consisting of three interacting molecules coupled to environments. It is shown that the entanglement can be further enhanced if th... We investigate the dynamics of entanglement in the excitation transfer through a model consisting of three interacting molecules coupled to environments. It is shown that the entanglement can be further enhanced if the distance between the molecules is oscillating. Our results demonstrate that the motional effect plays a constructive role on quantum entanglement in the dynamics of excitation transfer. This mechanism might provide a useful guideline for designing artificial systems to battle against decoherence. 展开更多
关键词 Motion-Enhanced Quantum Entanglement in the Dynamics of excitation Transfer
下载PDF
Phonon-assisted excitation energy transfer in photosynthetic systems
5
作者 陈浩 王信 +1 位作者 方爱平 李宏荣 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期581-586,共6页
The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest.This article shows the important role of the intramolecular vi... The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest.This article shows the important role of the intramolecular vibrational modes for excitation energy transfer in the photosynthetic systems.Based on a dimer system consisting of a donor and an acceptor modeled by two two-level systems,in which one of them is coupled to a high-energy vibrational mode,we derive an effective Hamiltonian describing the vibration-assisted coherent energy transfer process in the polaron frame.The effective Hamiltonian reveals in the case that the vibrational mode dynamically matches the energy detuning between the donor and the acceptor,the original detuned energy transfer becomes resonant energy transfer.In addition,the population dynamics and coherence dynamics of the dimer system with and without vibration-assistance are investigated numerically.It is found that,the energy transfer efficiency and the transfer time depend heavily on the interaction strength of the donor and the high-energy vibrational mode,as well as the vibrational frequency.The numerical results also indicate that the initial state and dissipation rate of the vibrational mode have little influence on the dynamics of the dimer system.Results obtained in this article are not only helpful to understand the natural photosynthesis,but also offer an optimal design principle for artificial photosynthesis. 展开更多
关键词 excitation energy transfer high-energy intramolecular vibrational motion resonant coherent transfer
下载PDF
Dielectronic recombination and resonant transfer excitation processes for helium-like krypton
6
作者 胡骁骊 屈一至 +1 位作者 张松斌 张宇 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期224-230,共7页
The relativistic configuration interaction method is employed to calculate the dielectronic recombination(DR) cross sections of helium-like krypton via the 1s2lnl ’(n = 2,3,...,15) resonances.Then,the resonant transf... The relativistic configuration interaction method is employed to calculate the dielectronic recombination(DR) cross sections of helium-like krypton via the 1s2lnl ’(n = 2,3,...,15) resonances.Then,the resonant transfer excitation(RTE) processes of Kr 34+ colliding with H,He,H 2,and CH x(x = 0-4) targets are investigated under the impulse approximation.The needed Compton profiles of targets are obtained from the Hartree-Fock wave functions.The RTE cross sections are strongly dependent on DR resonant energies and strengths,and the electron momentum distributions of the target.For H 2 and H targets,the ratio of their RTE cross sections changes from 1.85 for the 1s2l2l ’ to 1.88 for other resonances,which demonstrates the weak molecular effects on the Compton profiles of H 2.For CH x(x = 0-4) targets,the main contribution to the RTE cross section comes from the carbon atom since carbon carries 6 electrons;as the number of hydrogen increases in CH x,the RTE cross section almost increases by the same value,displaying the strong separate atom character for the hydrogen.However,further comparison of the individual orbital contributions of C(2p,2s,1s) and CH 4(1t 2,2a 1,1a 1) to the RTE cross sections shows that the molecular effects induce differences of about 25.1%,19.9%,and 0.2% between 2p-1t 2,2s-2a 1,and 1s-1a 1 orbitals,respectively. 展开更多
关键词 dielectronic recombination Compton profile resonant transfer excitation
全文增补中
Properties of Picosecond Fluorescence of Super High-Yield Hybrid Rice
7
作者 任兆玉 许晓明 +3 位作者 王水才 辛越勇 贺俊芳 匡廷云 《Acta Botanica Sinica》 CSCD 2003年第12期1442-1446,共5页
Thylakoid membrane preparations of super high-yield hybrid rice (Oryza sativa L.), Liangyoupeijiu (P9) and Shanyou 63 (SH 63) were used for investigating its spectral and time properties by using picosecond time-resol... Thylakoid membrane preparations of super high-yield hybrid rice (Oryza sativa L.), Liangyoupeijiu (P9) and Shanyou 63 (SH 63) were used for investigating its spectral and time properties by using picosecond time-resolved fluorescence spectrum measuring system. The thylakoid membrane preparations of P9 and SH 63 were excited by an Ar+ laser with a pulse width of 120 ps, repetition rate of 4 MHz and wavelength of 514 nm. The time constants of the excited energy transfer in these two varieties at flowering stage and grain filling stage were calculated from the experimental data. Based on the comparative studies of the time and spectral properties of the excited fluorescence in these ultrafast dynamic experiments the following was found: at both the flowering stage and grain filling stage, the speed of the excitation energy transfer, in photosystem was faster than that in photosystem II in P9 variety; and the speed of the excitation energy transfer at grain filling stage was faster than those at flowering stage for both rice varieties; the experiments also implied that the components and assembly of pigments in SH 63, but not in P9, changed during the process from flowering stage to grain filling stage for in these two rice varieties. 展开更多
关键词 super high-yield rice picosecond resolving FLUORESCENCE time constant excitation energy transfer
下载PDF
Excited-State Proton Transfer and Decay in Hydrogen-Bonded Oxazole System: MS-CASPT2//CASSCF Study
8
作者 谢斌斌 李春香 +1 位作者 崔刚龙 方道 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第1期38-46,I0001,共10页
Herein we have employed high-level multi-reference CASSCF and MS-CASPT2 electronic structure methods to systematically study the photochemical mechanism of intramolecularly hydrogen-bonded 2-(2'-hydroxyphenyl)-4-me... Herein we have employed high-level multi-reference CASSCF and MS-CASPT2 electronic structure methods to systematically study the photochemical mechanism of intramolecularly hydrogen-bonded 2-(2'-hydroxyphenyl)-4-methyloxazole. At the CASSCF level, we have optimized minima, conical intersections, minimum-energy reaction paths relevant to the excited-state intramolecular proton transfer (ESIPT), rotation, photoisomerization, and the excited-state deactivation pathways. The energies of all structures and paths are refined by the MS-CASPT2 method. On the basis of the present results, we found that the ESIPT process in a conformer with the OH... N hydrogen bond is essentially barrierless process; whereas, the ESIPT process is inhibited in the other conformer with the OH... O hydrogen bond. The central single-bond rotation of the S1 enol species is energetically unfavorable due to a large barrier. In addition, the excited-state deactivation of the S1 keto species, as a result of the ultrafast ESIPT, is very efficient because of the existence of two easily-approached keto S1/S0 conical intersections. In stark contrast to the S1 keto species, the decay of the S1 enol species is almostly blocked. The present theoretical study contributes valuable knowledge to the understanding of photochemistry of similar intramolecularly hydrogen-bonded molecular and biological systems. 展开更多
关键词 Excited state proton transfer PHOTOISOMERIZATION Conical intersection Ab initio PHOTOCHEMISTRY
下载PDF
Experimental and Theoretical Investigation on Excited State Intramolecular Proton Transfer Coupled Charge Transfer Reaction of Baicalein
9
作者 胡闪闪 刘琨 +2 位作者 丁倩倩 彭伟 陈茂笃 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第1期51-56,I0003,共7页
The excited state intramolecular proton transfer (ESIPT) coupled charge transfer of baicalein has been investigated using steady-state spectroscopic experiment and quantum chemistry calculations. The absence of the ... The excited state intramolecular proton transfer (ESIPT) coupled charge transfer of baicalein has been investigated using steady-state spectroscopic experiment and quantum chemistry calculations. The absence of the absorption peak from S1 excited state both in the experi-mental and calculated absorption spectra indicates that S1 is a dark state. The dark excited state S1 results in the very weak fluorescence of solid baicalein in the experiment. The fron- tier molecular orbital and the charge difference densities of baicalein show clearly that the S1 state is a charge-transfer state whereas the S2 state is a locally excited state. The only one stationary point on the potential energy profile of excited state suggests that the ESIPT reaction of baicalein is a barrierless process. 展开更多
关键词 Excited state intramolecular proton transfer Intramolecular charge transfer Time-dependent density functional theory Dark state BAICALEIN
下载PDF
Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates 被引量:1
10
作者 Chaofan Sun Bifa Cao +1 位作者 Hang Yin Ying Shi 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第5期534-539,共6页
It is of great significance to study the relationship between the excited state intramolecular proton transfer(ESIPT)properties and antioxidant activities of compounds in the field of life sciences.In this work,two no... It is of great significance to study the relationship between the excited state intramolecular proton transfer(ESIPT)properties and antioxidant activities of compounds in the field of life sciences.In this work,two novel compounds 5HF-OMe and 5HF-NH2 are designed through introducing a methoxy-and amino-group into the structure of 5-hydroxyflavone(5HF)respectively.The relationship between the ESIPT reaction and antioxidant activities of the three compounds is studied via the density functional theory(DFT)and time-dependent DFT(TD-DFT)methods.The calculated potential energy curves suggest that the rate of ESIPT reaction will gradually slow down from 5HF to 5HF-OMe and 5HF-NH2.In addition,the antioxidant activities of the three compounds gradually enhance from 5HF to 5HF-OMe and 5HF-NH2,which can be seen from the calculated energy gaps and ionization potential values.Interestingly,the above results imply that the rate of ESIPT reaction has a negative relationship with the antioxidant activities of the compounds,i.e.,the slower rate of ESIPT reaction will reflect the higher antioxidant activity of the compound,which will provide valuable reference for detecting the antioxidant activity of compound via the photophysical method. 展开更多
关键词 5-hydroxyflavone excited state intramolecular proton transfer antioxidant activity density functional theory
下载PDF
Effect of Photo-Oxidation on Energy Transfer in Light Harvesting Complex (LH2) from Rhodobacter Sphaeroides 601
11
作者 刘康俊 刘伟民 +4 位作者 闫永丽 董志伟 刘源 徐春和 钱士雄 《Chinese Physics Letters》 SCIE CAS CSCD 2006年第9期2598-2601,共4页
We study the photo-oxidation of bacteriochlorophylls (BChls) in peripheral light harvesting complexes (LH2) from rhodobacter sphaeroides by using the steady absorption and the femtosecond pump-probe measurement, t... We study the photo-oxidation of bacteriochlorophylls (BChls) in peripheral light harvesting complexes (LH2) from rhodobacter sphaeroides by using the steady absorption and the femtosecond pump-probe measurement, to realize the detailed dynamics of LH2 in the presence of photo-oxidation. The experimental results reveal that BChl-B850 radical cations may act as an additional channel to compete with the unoxidized BChl-B850 molecules for rapidly releasing the excitation energy, while the B800→B850 energy transfer rate is almost unaffected in the oxidation process. 展开更多
关键词 ONE-ELECTRON OXIDATION RHODOBACTER-SPHAEROIDES ANTENNA COMPLEXES PHOTOSYNTHETIC BACTERIA REACTION CENTERS ELECTROCHEMICAL OXIDATION RHODOSPIRILLUM-RUBRUM excitation TRANSFER BACTERIOCHLOROPHYLL DYNAMICS
下载PDF
The Hierarchical Stochastic Schrodinger Equations: Theory and Applications
12
作者 Yu-Chen Wang Yi Zhao 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第6期653-667,I0002,共16页
The hierarchical stochastic Schrodinger equations(HSSE)are a kind of numerically exact wavefunction-based approaches suitable for the quantum dynamics simulations in a relatively large system coupled to a bosonic bath... The hierarchical stochastic Schrodinger equations(HSSE)are a kind of numerically exact wavefunction-based approaches suitable for the quantum dynamics simulations in a relatively large system coupled to a bosonic bath.Starting from the influence-functional description of open quantum systems,this review outlines the general theoretical framework of HSSEs and their concrete forms in different situations.The applicability and efficiency of HSSEs are exemplified by the simulations of ultrafast excitation energy transfer processes in large-scale systems. 展开更多
关键词 Hierarchical stochastic Schrodinger equation excitation energy transfer Open quantum system
下载PDF
Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
13
作者 Hong-Bin Zhan Heng-Wei Zhang +3 位作者 Jun-Jie Jiang Yi Wang Xu Fei Jing Tian 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第3期581-588,共8页
The fluorescence mechanism of HBT-HBZ is investigated in this work. A fluorescent probe is used to detect HClO content in living cells and tap water, and its structure after oxidation by HCl O(HBT-ClO) is discussed ba... The fluorescence mechanism of HBT-HBZ is investigated in this work. A fluorescent probe is used to detect HClO content in living cells and tap water, and its structure after oxidation by HCl O(HBT-ClO) is discussed based on the density functional theory(DFT) and time-dependent density functional theory(TDDFT). At the same time, the influence of the probe conformation and the proton transfer site within the excited state molecule on the fluorescence mechanism are revealed. Combined with infrared vibrational spectra and atoms-in-molecules theory, the strength of intramolecular hydrogen bonds in HBT-HBZ and HBT-ClO and their isomers are demonstrated qualitatively. The relationship between the strength of intramolecular hydrogen bonds and dipole moments is discussed. The potential energy curves demonstrate the feasibility of intramolecular proton transfer. The weak fluorescence phenomenon of HBT-HBZ in solution is quantitatively explained by analyzing the frontier molecular orbital and hole electron caused by charge separation. Moreover, when strong cyan fluorescence occurs in solution, the corresponding molecular structure should be HBT-ClO(T). The influence of the intramolecular hydrogen bond formation site on the molecule as a whole is also investigated by electrostatic potential analysis. 展开更多
关键词 BENZOTHIAZOLE excited state intramolecular proton transfer fluorescence mechanism density functional theory
下载PDF
Theoretical investigation of fluorescence changes caused by methanol bridge based on ESIPT reaction
14
作者 Xinglei Zhang Lixia Zhu +6 位作者 Zhengran Wang Bifa Cao Qiao Zhou You Li Bo Li Hang Yin Ying Shi 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第11期637-643,共7页
The different fluorescence behavior caused by the excited state proton transfer in 3-hydroxy-4-pyridylisoquinoline(2a)compound has been theoretically investigated.Our calculation results illustrate that the 2a monomer... The different fluorescence behavior caused by the excited state proton transfer in 3-hydroxy-4-pyridylisoquinoline(2a)compound has been theoretically investigated.Our calculation results illustrate that the 2a monomer in tetrahydrofuran solvent would not occur proton transfer spontaneously,while the 2a complex in methanol(MeOH)solvent can undergo an asynchronous excited state intramolecular proton transfer(ESIPT)process.The result was confirmed by analyzing the related structural parameters,infrared vibration spectrum and reduced density gradient isosurfaces.Moreover,the potential curves revealed that with the bridging of single MeOH molecular the energy barrier of ESIPT was modulated effectively.It was distinctly reduced to 4.80 kcal/mol in 2a-MeOH complex from 25.01 kcal/mol in 2a monomer.Accordingly,the ESIPT process induced a fluorochromic phenomenon with the assistant of proton-bridge.The elucidation of the mechanism of solvent discoloration will contribute to the design and synthesis of fluorogenic dyes as environment-sensitive probes. 展开更多
关键词 DFT/TDDFT fluorochromic excited state intramolecular proton transfer methanol bridge
下载PDF
Effect of intramolecular and intermolecular hydrogen bonding on the ESIPT process in DEAHB molecule
15
作者 Hui Li Lina Ma +1 位作者 Hang Yin Ying Shi 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第9期609-614,共6页
Density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods are used to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited-state intramolecul... Density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods are used to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited-state intramolecular proton transfer(ESIPT) for the 4-N,N-(diethylamino)-2-hydroxybenzaldehyde(DEAHB). The structures of DEAHB and its hydrogenbonded complex in the ground-state and the excited-state are optimized. In addition, the detailed descriptions of frontier molecular orbitals of the DEAHB monomer and DEAHB-DMSO complex are presented. Moreover, the transition density matrix is worked out to gain deeper insight into the orbitals change. It is hoped that the present work not only elaborates different influence mechanisms between intramolecular and intermolecular hydrogen bonding interactions on the ESIPT process for DEAHB, but also may be helpful to design and develop new materials and applications involved DEAHB systems in the future. 展开更多
关键词 time-dependent density functional theory excited state intramolecular proton transfer intramolec-ular charge transfer
下载PDF
Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
16
作者 Guang Yang Kaifeng Chen +1 位作者 Gang Wang Dapeng Yang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第10期222-226,共5页
We execute the density functional theory(DFT) and time-dependent density functional theory(TDDFT) approaches to make a detailed exploration about excited state luminescent properties as well as excited state intramole... We execute the density functional theory(DFT) and time-dependent density functional theory(TDDFT) approaches to make a detailed exploration about excited state luminescent properties as well as excited state intramolecular proton transfer(ESIPT) mechanism for the novel 2,6-dimethyl phenyl(DMP-HBT-py) system. Firstly, we check and confirm the formation and stabilization of hydrogen bonding interaction for DMP-HBT-py. Via optimized geometrical parameters of primary chemical bond and infrared(IR) spectra, we find O–H··· N hydrogen bond of DMP-HBT-py should be strengthened in S1 state. Insights into frontier molecular orbitals(MOs) analyses, we infer charge redistribution and charge transfer(ICT)phenomena motivate ESIPT trend. Via probing into potential energy curves(PECs) in related electronic states, we come up with the ultrafast ESIPT behavior due to low potential barrier. Furthermore, we search the reaction transition state(TS)structure, the ultrafast ESIPT behavior and mechanism of DMP-HBT-py compound can be re-confirmed. We sincerely wish this work could play roles in further developing novel applications based on DMP-HBT-py compound and in promoting efficient solid emitters in OLEDs in future. 展开更多
关键词 infrared vibrational spectra intramolecular charge transfer potential energy curve excited state intramolecular proton transfer
下载PDF
Theoretical investigation on the excited state intramolecular proton transfer in Me_(2)N substituted flavonoid by the time-dependent density functional theory method
17
作者 Hang Yin Ying Shi 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第5期534-538,共5页
Time-dependent density functional theory(TDDFT)method is used to investigate the details of the excited state intramolecular proton transfer(ESIPT)process and the mechanism for temperature effect on the Enol^(*)/Keto^... Time-dependent density functional theory(TDDFT)method is used to investigate the details of the excited state intramolecular proton transfer(ESIPT)process and the mechanism for temperature effect on the Enol^(*)/Keto^(*)emission ratio for the Me_(2)N-substited flavonoid(MNF)compound.The geometric structures of the S_(0) and S_(1) states are denoted as the Enol,Enol^(*),and Keto*.In addition,the absorption and fluorescence peaks are also calculated.It is noted that the calculated large Stokes shift is in good agreement with the experimental result.Furthermore,our results confirm that the ESIPT process happens upon photoexcitation,which is distinctly monitored by the formation and disappearance of the characteristic peaks of infrared(IR)spectra involved in the proton transfer and in the potential energy curves.Besides,the calculations of highest occupied molecular orbital(HOMO)and lowest unoccupied molecular orbital(LUMO)reveal that the electronegativity change of proton acceptor due to the intramolecular charge redistribution in the S_(1) state induces the ESIPT.Moreover,the thermodynamic calculation for the MNF shows that the Enol^(*)/Keto^(*)emission ratio decreasing with temperature increasing arises from the barrier lowering of ESIPT. 展开更多
关键词 time-dependent density functional theory excited state intramolecular proton transfer intramolecular charge transfer transition state
下载PDF
Theoretical study on the mechanism for the excited-state double proton transfer process of an asymmetric Schiff base ligand
18
作者 Zhengran Wang Qiao Zhou +5 位作者 Bifa Cao Bo Li Lixia Zhu Xinglei Zhang Hang Yin Ying Shi 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期715-720,共6页
Excited-state double proton transfer(ESDPT)in the 1-[(2-hydroxy-3-methoxy-benzylidene)-hydrazonomethyl]-naphthalen-2-ol(HYDRAVH_(2))ligand was studied by the density functional theory and time-dependent density functi... Excited-state double proton transfer(ESDPT)in the 1-[(2-hydroxy-3-methoxy-benzylidene)-hydrazonomethyl]-naphthalen-2-ol(HYDRAVH_(2))ligand was studied by the density functional theory and time-dependent density functional theory method.The analysis of frontier molecular orbitals,infrared spectra,and non-covalent interactions have crossvalidated that the asymmetric structure has an influence on the proton transfer,which makes the proton transfer ability of the two hydrogen protons different.The potential energy surfaces in both S_(0)and S_1 states were scanned with varying O-H bond lengths.The results of potential energy surface analysis adequately proved that the HYDRAVH_(2)can undergo the ESDPT process in the S_1 state and the double proton transfer process is a stepwise proton transfer mechanism.Our work can pave the way towards the design and synthesis of new molecules. 展开更多
关键词 DFT/TDDFT schiff base ligand excited state intramolecular double proton transfer
下载PDF
Mechanism of Excited State Double Proton Transfer in 2-Amino-3-Methoxypyridine and Acetic Acid Complex
19
作者 Qing-Chi Meng Guang-Hua Ren, +1 位作者 Song-Qiu Yang Tian-Shu Chu 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第9期87-89,共3页
The excited-state double-proton transfer (ESDPT) mechanism of 2-amino-3-methoxypyridine and acetic acid com- plex is studied by the density functional theory (DFT) and time-dependent DFT with CAM-B3LYP functional.... The excited-state double-proton transfer (ESDPT) mechanism of 2-amino-3-methoxypyridine and acetic acid com- plex is studied by the density functional theory (DFT) and time-dependent DFT with CAM-B3LYP functional. The complex is connected through two different types of inter-molecular hydrogen bonds. After photo-excitation, both hydrogen bonds get strengthened, which can facilitate the ESDPT reaction. The scanned potential energy curve along the proton transfer coordinate indicates that the ESDPT reaction proceeds in a stepwise pattern. 展开更多
关键词 LYP CAM PT MOP Mechanism of Excited State Double Proton Transfer in 2-Amino-3-Methoxypyridine and Acetic Acid Complex
下载PDF
Efficient and Fast X-Ray Luminescence in Organic Phosphors Through High-Level Triplet-Singlet Reverse Intersystem Crossing 被引量:1
20
作者 Yang Zhang Minghong Chen +9 位作者 Xiaoze Wang Miao Lin Hongyu Wang Weihong Li Fuhai Chen Qing Liao Hongming Chen Qiushui Chen Meijin Lin Huanghao Yang 《CCS Chemistry》 CSCD 2024年第2期334-341,共8页
Organic scintillators that efficiently generate bright triplet excitons are of critical importance for highperformance X-ray-excited luminescence in radiation detection.However,the nature of triplet-singlet spinforbid... Organic scintillators that efficiently generate bright triplet excitons are of critical importance for highperformance X-ray-excited luminescence in radiation detection.However,the nature of triplet-singlet spinforbidden transitions in these materials often result in long-lived phosphorescence,which is undesirable for ultrafast X-ray detection and imaging.Here we demonstrate that the effect of hybridized local and charge-transfer(HLCT)excited states enables organic scintillators to exhibit highly efficient and fast radioluminescence(RL)in response to X-ray irradiation.Our experimental and theoretical investigation shows that the oxidized 1,8-naphthalimide-phenothiazine dyad(OMNI-PTZ 2)with HLCT-excited states has an enhanced overlap integral of the highest occupied molecular orbital(HOMO)and lowest unoccupied molecular orbital(LUMO)on MNIπ-orbitals,and moderate donor–acceptor electron interactions.As a result,the RL of these crystals exhibits a 61-fold increase and its monoexponential decay lifetime is three orders of magnitude faster compared to its corresponding thermally activated delayed fluorescence(TADF)molecule MNI-PTZ 1.We further demonstrate the practical utility of the OMNI-PTZ 2(G)in high-performance X-ray detection and imaging,achieving an X-ray dose sensitivity of 97 nGy s−1 and an exceptional spatial resolution of 20 lp/mm.Our study provides a promising molecular design principle for utilizing triplet excitons to develop high-efficiency and fast X-ray scintillators for the development of next-generation flexible and stretchable X-ray imaging detectors. 展开更多
关键词 organic scintillators X-ray imaging hybridized local and charge transfer excited state triplet-singlet reverse intersystem crossing high exciton utilization
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部