Triplet-triplet energy transfer in fluorene dimer with electronic structure calculations. The two is investigated by combining rate theories key parameters for the control of energy transfer, electronic coupling and r...Triplet-triplet energy transfer in fluorene dimer with electronic structure calculations. The two is investigated by combining rate theories key parameters for the control of energy transfer, electronic coupling and reorganization energy, are calculated based on the diabatic states constructed by the constrained density functional theory. The fluctuation of the electronic coupling is further revealed by molecular dynamics simulation. Succeedingly, the diagonal and off-diagonal fluctuations of the Hamiltonian are mapped from the correlation functions of those parameters, and the rate is then estimated both from the perturbation theory and wavepacket diffusion method. The results manifest that both the static and dynamic fluctuations enhance the rate significantly, but the rate from the dynamic fluctuation is smaller than that from the static fluctuation.展开更多
The relativistic configuration interaction method is employed to calculate the dielectronic recombination(DR) cross sections of helium-like krypton via the 1s2lnl '(n = 2,3,...,15) resonances.Then,the resonant tr...The relativistic configuration interaction method is employed to calculate the dielectronic recombination(DR) cross sections of helium-like krypton via the 1s2lnl '(n = 2,3,...,15) resonances.Then,the resonant transfer excitation(RTE) processes of Kr 34+ colliding with H,He,H 2,and CH x(x = 0-4) targets are investigated under the impulse approximation.The needed Compton profiles of targets are obtained from the Hartree-Fock wave functions.The RTE cross sections are strongly dependent on DR resonant energies and strengths,and the electron momentum distributions of the target.For H 2 and H targets,the ratio of their RTE cross sections changes from 1.85 for the 1s2l2l ' to 1.88 for other resonances,which demonstrates the weak molecular effects on the Compton profiles of H 2.For CH x(x = 0-4) targets,the main contribution to the RTE cross section comes from the carbon atom since carbon carries 6 electrons;as the number of hydrogen increases in CH x,the RTE cross section almost increases by the same value,displaying the strong separate atom character for the hydrogen.However,further comparison of the individual orbital contributions of C(2p,2s,1s) and CH 4(1t 2,2a 1,1a 1) to the RTE cross sections shows that the molecular effects induce differences of about 25.1%,19.9%,and 0.2% between 2p-1t 2,2s-2a 1,and 1s-1a 1 orbitals,respectively.展开更多
The important role of high-energy intramolecular vibrational modes for excitation energy transfer in the detuned photosynthetic systems is studied. Based on a basic dimer model which consists of two two-level systems ...The important role of high-energy intramolecular vibrational modes for excitation energy transfer in the detuned photosynthetic systems is studied. Based on a basic dimer model which consists of two two-level systems (pigments) coupled to high-energy vibrational modes, we find that the high-energy intramolecular vibrational modes can enhance the energy transfer with new coherent transfer channels being opened when the phonon energy matches the detuning between the two pigments. As a result, the energy can be effectively transferred into the acceptor. The effective Hamiltonian is obtained to reveal the strong coherent energy exchange among the donor, the acceptor, and the high-energy intramolecular. A semi-classical explanation of the phonon-assisted mechanism is also shown.展开更多
We investigate the dynamics of entanglement in the excitation transfer through a model consisting of three interacting molecules coupled to environments. It is shown that the entanglement can be further enhanced if th...We investigate the dynamics of entanglement in the excitation transfer through a model consisting of three interacting molecules coupled to environments. It is shown that the entanglement can be further enhanced if the distance between the molecules is oscillating. Our results demonstrate that the motional effect plays a constructive role on quantum entanglement in the dynamics of excitation transfer. This mechanism might provide a useful guideline for designing artificial systems to battle against decoherence.展开更多
The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest.This article shows the important role of the intramolecular vi...The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest.This article shows the important role of the intramolecular vibrational modes for excitation energy transfer in the photosynthetic systems.Based on a dimer system consisting of a donor and an acceptor modeled by two two-level systems,in which one of them is coupled to a high-energy vibrational mode,we derive an effective Hamiltonian describing the vibration-assisted coherent energy transfer process in the polaron frame.The effective Hamiltonian reveals in the case that the vibrational mode dynamically matches the energy detuning between the donor and the acceptor,the original detuned energy transfer becomes resonant energy transfer.In addition,the population dynamics and coherence dynamics of the dimer system with and without vibration-assistance are investigated numerically.It is found that,the energy transfer efficiency and the transfer time depend heavily on the interaction strength of the donor and the high-energy vibrational mode,as well as the vibrational frequency.The numerical results also indicate that the initial state and dissipation rate of the vibrational mode have little influence on the dynamics of the dimer system.Results obtained in this article are not only helpful to understand the natural photosynthesis,but also offer an optimal design principle for artificial photosynthesis.展开更多
The relativistic configuration interaction method is employed to calculate the dielectronic recombination(DR) cross sections of helium-like krypton via the 1s2lnl ’(n = 2,3,...,15) resonances.Then,the resonant transf...The relativistic configuration interaction method is employed to calculate the dielectronic recombination(DR) cross sections of helium-like krypton via the 1s2lnl ’(n = 2,3,...,15) resonances.Then,the resonant transfer excitation(RTE) processes of Kr 34+ colliding with H,He,H 2,and CH x(x = 0-4) targets are investigated under the impulse approximation.The needed Compton profiles of targets are obtained from the Hartree-Fock wave functions.The RTE cross sections are strongly dependent on DR resonant energies and strengths,and the electron momentum distributions of the target.For H 2 and H targets,the ratio of their RTE cross sections changes from 1.85 for the 1s2l2l ’ to 1.88 for other resonances,which demonstrates the weak molecular effects on the Compton profiles of H 2.For CH x(x = 0-4) targets,the main contribution to the RTE cross section comes from the carbon atom since carbon carries 6 electrons;as the number of hydrogen increases in CH x,the RTE cross section almost increases by the same value,displaying the strong separate atom character for the hydrogen.However,further comparison of the individual orbital contributions of C(2p,2s,1s) and CH 4(1t 2,2a 1,1a 1) to the RTE cross sections shows that the molecular effects induce differences of about 25.1%,19.9%,and 0.2% between 2p-1t 2,2s-2a 1,and 1s-1a 1 orbitals,respectively.展开更多
Thylakoid membrane preparations of super high-yield hybrid rice (Oryza sativa L.), Liangyoupeijiu (P9) and Shanyou 63 (SH 63) were used for investigating its spectral and time properties by using picosecond time-resol...Thylakoid membrane preparations of super high-yield hybrid rice (Oryza sativa L.), Liangyoupeijiu (P9) and Shanyou 63 (SH 63) were used for investigating its spectral and time properties by using picosecond time-resolved fluorescence spectrum measuring system. The thylakoid membrane preparations of P9 and SH 63 were excited by an Ar+ laser with a pulse width of 120 ps, repetition rate of 4 MHz and wavelength of 514 nm. The time constants of the excited energy transfer in these two varieties at flowering stage and grain filling stage were calculated from the experimental data. Based on the comparative studies of the time and spectral properties of the excited fluorescence in these ultrafast dynamic experiments the following was found: at both the flowering stage and grain filling stage, the speed of the excitation energy transfer, in photosystem was faster than that in photosystem II in P9 variety; and the speed of the excitation energy transfer at grain filling stage was faster than those at flowering stage for both rice varieties; the experiments also implied that the components and assembly of pigments in SH 63, but not in P9, changed during the process from flowering stage to grain filling stage for in these two rice varieties.展开更多
Herein we have employed high-level multi-reference CASSCF and MS-CASPT2 electronic structure methods to systematically study the photochemical mechanism of intramolecularly hydrogen-bonded 2-(2'-hydroxyphenyl)-4-me...Herein we have employed high-level multi-reference CASSCF and MS-CASPT2 electronic structure methods to systematically study the photochemical mechanism of intramolecularly hydrogen-bonded 2-(2'-hydroxyphenyl)-4-methyloxazole. At the CASSCF level, we have optimized minima, conical intersections, minimum-energy reaction paths relevant to the excited-state intramolecular proton transfer (ESIPT), rotation, photoisomerization, and the excited-state deactivation pathways. The energies of all structures and paths are refined by the MS-CASPT2 method. On the basis of the present results, we found that the ESIPT process in a conformer with the OH... N hydrogen bond is essentially barrierless process; whereas, the ESIPT process is inhibited in the other conformer with the OH... O hydrogen bond. The central single-bond rotation of the S1 enol species is energetically unfavorable due to a large barrier. In addition, the excited-state deactivation of the S1 keto species, as a result of the ultrafast ESIPT, is very efficient because of the existence of two easily-approached keto S1/S0 conical intersections. In stark contrast to the S1 keto species, the decay of the S1 enol species is almostly blocked. The present theoretical study contributes valuable knowledge to the understanding of photochemistry of similar intramolecularly hydrogen-bonded molecular and biological systems.展开更多
The excited state intramolecular proton transfer (ESIPT) coupled charge transfer of baicalein has been investigated using steady-state spectroscopic experiment and quantum chemistry calculations. The absence of the ...The excited state intramolecular proton transfer (ESIPT) coupled charge transfer of baicalein has been investigated using steady-state spectroscopic experiment and quantum chemistry calculations. The absence of the absorption peak from S1 excited state both in the experi-mental and calculated absorption spectra indicates that S1 is a dark state. The dark excited state S1 results in the very weak fluorescence of solid baicalein in the experiment. The fron- tier molecular orbital and the charge difference densities of baicalein show clearly that the S1 state is a charge-transfer state whereas the S2 state is a locally excited state. The only one stationary point on the potential energy profile of excited state suggests that the ESIPT reaction of baicalein is a barrierless process.展开更多
It is of great significance to study the relationship between the excited state intramolecular proton transfer(ESIPT)properties and antioxidant activities of compounds in the field of life sciences.In this work,two no...It is of great significance to study the relationship between the excited state intramolecular proton transfer(ESIPT)properties and antioxidant activities of compounds in the field of life sciences.In this work,two novel compounds 5HF-OMe and 5HF-NH2 are designed through introducing a methoxy-and amino-group into the structure of 5-hydroxyflavone(5HF)respectively.The relationship between the ESIPT reaction and antioxidant activities of the three compounds is studied via the density functional theory(DFT)and time-dependent DFT(TD-DFT)methods.The calculated potential energy curves suggest that the rate of ESIPT reaction will gradually slow down from 5HF to 5HF-OMe and 5HF-NH2.In addition,the antioxidant activities of the three compounds gradually enhance from 5HF to 5HF-OMe and 5HF-NH2,which can be seen from the calculated energy gaps and ionization potential values.Interestingly,the above results imply that the rate of ESIPT reaction has a negative relationship with the antioxidant activities of the compounds,i.e.,the slower rate of ESIPT reaction will reflect the higher antioxidant activity of the compound,which will provide valuable reference for detecting the antioxidant activity of compound via the photophysical method.展开更多
We study the photo-oxidation of bacteriochlorophylls (BChls) in peripheral light harvesting complexes (LH2) from rhodobacter sphaeroides by using the steady absorption and the femtosecond pump-probe measurement, t...We study the photo-oxidation of bacteriochlorophylls (BChls) in peripheral light harvesting complexes (LH2) from rhodobacter sphaeroides by using the steady absorption and the femtosecond pump-probe measurement, to realize the detailed dynamics of LH2 in the presence of photo-oxidation. The experimental results reveal that BChl-B850 radical cations may act as an additional channel to compete with the unoxidized BChl-B850 molecules for rapidly releasing the excitation energy, while the B800→B850 energy transfer rate is almost unaffected in the oxidation process.展开更多
The hierarchical stochastic Schrodinger equations(HSSE)are a kind of numerically exact wavefunction-based approaches suitable for the quantum dynamics simulations in a relatively large system coupled to a bosonic bath...The hierarchical stochastic Schrodinger equations(HSSE)are a kind of numerically exact wavefunction-based approaches suitable for the quantum dynamics simulations in a relatively large system coupled to a bosonic bath.Starting from the influence-functional description of open quantum systems,this review outlines the general theoretical framework of HSSEs and their concrete forms in different situations.The applicability and efficiency of HSSEs are exemplified by the simulations of ultrafast excitation energy transfer processes in large-scale systems.展开更多
The fluorescence mechanism of HBT-HBZ is investigated in this work. A fluorescent probe is used to detect HClO content in living cells and tap water, and its structure after oxidation by HCl O(HBT-ClO) is discussed ba...The fluorescence mechanism of HBT-HBZ is investigated in this work. A fluorescent probe is used to detect HClO content in living cells and tap water, and its structure after oxidation by HCl O(HBT-ClO) is discussed based on the density functional theory(DFT) and time-dependent density functional theory(TDDFT). At the same time, the influence of the probe conformation and the proton transfer site within the excited state molecule on the fluorescence mechanism are revealed. Combined with infrared vibrational spectra and atoms-in-molecules theory, the strength of intramolecular hydrogen bonds in HBT-HBZ and HBT-ClO and their isomers are demonstrated qualitatively. The relationship between the strength of intramolecular hydrogen bonds and dipole moments is discussed. The potential energy curves demonstrate the feasibility of intramolecular proton transfer. The weak fluorescence phenomenon of HBT-HBZ in solution is quantitatively explained by analyzing the frontier molecular orbital and hole electron caused by charge separation. Moreover, when strong cyan fluorescence occurs in solution, the corresponding molecular structure should be HBT-ClO(T). The influence of the intramolecular hydrogen bond formation site on the molecule as a whole is also investigated by electrostatic potential analysis.展开更多
The different fluorescence behavior caused by the excited state proton transfer in 3-hydroxy-4-pyridylisoquinoline(2a)compound has been theoretically investigated.Our calculation results illustrate that the 2a monomer...The different fluorescence behavior caused by the excited state proton transfer in 3-hydroxy-4-pyridylisoquinoline(2a)compound has been theoretically investigated.Our calculation results illustrate that the 2a monomer in tetrahydrofuran solvent would not occur proton transfer spontaneously,while the 2a complex in methanol(MeOH)solvent can undergo an asynchronous excited state intramolecular proton transfer(ESIPT)process.The result was confirmed by analyzing the related structural parameters,infrared vibration spectrum and reduced density gradient isosurfaces.Moreover,the potential curves revealed that with the bridging of single MeOH molecular the energy barrier of ESIPT was modulated effectively.It was distinctly reduced to 4.80 kcal/mol in 2a-MeOH complex from 25.01 kcal/mol in 2a monomer.Accordingly,the ESIPT process induced a fluorochromic phenomenon with the assistant of proton-bridge.The elucidation of the mechanism of solvent discoloration will contribute to the design and synthesis of fluorogenic dyes as environment-sensitive probes.展开更多
Density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods are used to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited-state intramolecul...Density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods are used to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited-state intramolecular proton transfer(ESIPT) for the 4-N,N-(diethylamino)-2-hydroxybenzaldehyde(DEAHB). The structures of DEAHB and its hydrogenbonded complex in the ground-state and the excited-state are optimized. In addition, the detailed descriptions of frontier molecular orbitals of the DEAHB monomer and DEAHB-DMSO complex are presented. Moreover, the transition density matrix is worked out to gain deeper insight into the orbitals change. It is hoped that the present work not only elaborates different influence mechanisms between intramolecular and intermolecular hydrogen bonding interactions on the ESIPT process for DEAHB, but also may be helpful to design and develop new materials and applications involved DEAHB systems in the future.展开更多
We execute the density functional theory(DFT) and time-dependent density functional theory(TDDFT) approaches to make a detailed exploration about excited state luminescent properties as well as excited state intramole...We execute the density functional theory(DFT) and time-dependent density functional theory(TDDFT) approaches to make a detailed exploration about excited state luminescent properties as well as excited state intramolecular proton transfer(ESIPT) mechanism for the novel 2,6-dimethyl phenyl(DMP-HBT-py) system. Firstly, we check and confirm the formation and stabilization of hydrogen bonding interaction for DMP-HBT-py. Via optimized geometrical parameters of primary chemical bond and infrared(IR) spectra, we find O–H··· N hydrogen bond of DMP-HBT-py should be strengthened in S1 state. Insights into frontier molecular orbitals(MOs) analyses, we infer charge redistribution and charge transfer(ICT)phenomena motivate ESIPT trend. Via probing into potential energy curves(PECs) in related electronic states, we come up with the ultrafast ESIPT behavior due to low potential barrier. Furthermore, we search the reaction transition state(TS)structure, the ultrafast ESIPT behavior and mechanism of DMP-HBT-py compound can be re-confirmed. We sincerely wish this work could play roles in further developing novel applications based on DMP-HBT-py compound and in promoting efficient solid emitters in OLEDs in future.展开更多
Time-dependent density functional theory(TDDFT)method is used to investigate the details of the excited state intramolecular proton transfer(ESIPT)process and the mechanism for temperature effect on the Enol^(*)/Keto^...Time-dependent density functional theory(TDDFT)method is used to investigate the details of the excited state intramolecular proton transfer(ESIPT)process and the mechanism for temperature effect on the Enol^(*)/Keto^(*)emission ratio for the Me_(2)N-substited flavonoid(MNF)compound.The geometric structures of the S_(0) and S_(1) states are denoted as the Enol,Enol^(*),and Keto*.In addition,the absorption and fluorescence peaks are also calculated.It is noted that the calculated large Stokes shift is in good agreement with the experimental result.Furthermore,our results confirm that the ESIPT process happens upon photoexcitation,which is distinctly monitored by the formation and disappearance of the characteristic peaks of infrared(IR)spectra involved in the proton transfer and in the potential energy curves.Besides,the calculations of highest occupied molecular orbital(HOMO)and lowest unoccupied molecular orbital(LUMO)reveal that the electronegativity change of proton acceptor due to the intramolecular charge redistribution in the S_(1) state induces the ESIPT.Moreover,the thermodynamic calculation for the MNF shows that the Enol^(*)/Keto^(*)emission ratio decreasing with temperature increasing arises from the barrier lowering of ESIPT.展开更多
Excited-state double proton transfer(ESDPT)in the 1-[(2-hydroxy-3-methoxy-benzylidene)-hydrazonomethyl]-naphthalen-2-ol(HYDRAVH_(2))ligand was studied by the density functional theory and time-dependent density functi...Excited-state double proton transfer(ESDPT)in the 1-[(2-hydroxy-3-methoxy-benzylidene)-hydrazonomethyl]-naphthalen-2-ol(HYDRAVH_(2))ligand was studied by the density functional theory and time-dependent density functional theory method.The analysis of frontier molecular orbitals,infrared spectra,and non-covalent interactions have crossvalidated that the asymmetric structure has an influence on the proton transfer,which makes the proton transfer ability of the two hydrogen protons different.The potential energy surfaces in both S_(0)and S_1 states were scanned with varying O-H bond lengths.The results of potential energy surface analysis adequately proved that the HYDRAVH_(2)can undergo the ESDPT process in the S_1 state and the double proton transfer process is a stepwise proton transfer mechanism.Our work can pave the way towards the design and synthesis of new molecules.展开更多
The excited-state double-proton transfer (ESDPT) mechanism of 2-amino-3-methoxypyridine and acetic acid com- plex is studied by the density functional theory (DFT) and time-dependent DFT with CAM-B3LYP functional....The excited-state double-proton transfer (ESDPT) mechanism of 2-amino-3-methoxypyridine and acetic acid com- plex is studied by the density functional theory (DFT) and time-dependent DFT with CAM-B3LYP functional. The complex is connected through two different types of inter-molecular hydrogen bonds. After photo-excitation, both hydrogen bonds get strengthened, which can facilitate the ESDPT reaction. The scanned potential energy curve along the proton transfer coordinate indicates that the ESDPT reaction proceeds in a stepwise pattern.展开更多
Organic scintillators that efficiently generate bright triplet excitons are of critical importance for highperformance X-ray-excited luminescence in radiation detection.However,the nature of triplet-singlet spinforbid...Organic scintillators that efficiently generate bright triplet excitons are of critical importance for highperformance X-ray-excited luminescence in radiation detection.However,the nature of triplet-singlet spinforbidden transitions in these materials often result in long-lived phosphorescence,which is undesirable for ultrafast X-ray detection and imaging.Here we demonstrate that the effect of hybridized local and charge-transfer(HLCT)excited states enables organic scintillators to exhibit highly efficient and fast radioluminescence(RL)in response to X-ray irradiation.Our experimental and theoretical investigation shows that the oxidized 1,8-naphthalimide-phenothiazine dyad(OMNI-PTZ 2)with HLCT-excited states has an enhanced overlap integral of the highest occupied molecular orbital(HOMO)and lowest unoccupied molecular orbital(LUMO)on MNIπ-orbitals,and moderate donor–acceptor electron interactions.As a result,the RL of these crystals exhibits a 61-fold increase and its monoexponential decay lifetime is three orders of magnitude faster compared to its corresponding thermally activated delayed fluorescence(TADF)molecule MNI-PTZ 1.We further demonstrate the practical utility of the OMNI-PTZ 2(G)in high-performance X-ray detection and imaging,achieving an X-ray dose sensitivity of 97 nGy s−1 and an exceptional spatial resolution of 20 lp/mm.Our study provides a promising molecular design principle for utilizing triplet excitons to develop high-efficiency and fast X-ray scintillators for the development of next-generation flexible and stretchable X-ray imaging detectors.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.20833004 and No.21073146) and the Research Fund for the Doctoral Program of Higher Education of China (No.200803840009).
文摘Triplet-triplet energy transfer in fluorene dimer with electronic structure calculations. The two is investigated by combining rate theories key parameters for the control of energy transfer, electronic coupling and reorganization energy, are calculated based on the diabatic states constructed by the constrained density functional theory. The fluctuation of the electronic coupling is further revealed by molecular dynamics simulation. Succeedingly, the diagonal and off-diagonal fluctuations of the Hamiltonian are mapped from the correlation functions of those parameters, and the rate is then estimated both from the perturbation theory and wavepacket diffusion method. The results manifest that both the static and dynamic fluctuations enhance the rate significantly, but the rate from the dynamic fluctuation is smaller than that from the static fluctuation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 1179041,11025417,and 10979007) the NSAF (Grant No. 10876043)
文摘The relativistic configuration interaction method is employed to calculate the dielectronic recombination(DR) cross sections of helium-like krypton via the 1s2lnl '(n = 2,3,...,15) resonances.Then,the resonant transfer excitation(RTE) processes of Kr 34+ colliding with H,He,H 2,and CH x(x = 0-4) targets are investigated under the impulse approximation.The needed Compton profiles of targets are obtained from the Hartree-Fock wave functions.The RTE cross sections are strongly dependent on DR resonant energies and strengths,and the electron momentum distributions of the target.For H 2 and H targets,the ratio of their RTE cross sections changes from 1.85 for the 1s2l2l ' to 1.88 for other resonances,which demonstrates the weak molecular effects on the Compton profiles of H 2.For CH x(x = 0-4) targets,the main contribution to the RTE cross section comes from the carbon atom since carbon carries 6 electrons;as the number of hydrogen increases in CH x,the RTE cross section almost increases by the same value,displaying the strong separate atom character for the hydrogen.However,further comparison of the individual orbital contributions of C(2p,2s,1s) and CH 4(1t 2,2a 1,1a 1) to the RTE cross sections shows that the molecular effects induce differences of about 25.1%,19.9%,and 0.2% between 2p-1t 2,2s-2a 1,and 1s-1a 1 orbitals,respectively.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174233)
文摘The important role of high-energy intramolecular vibrational modes for excitation energy transfer in the detuned photosynthetic systems is studied. Based on a basic dimer model which consists of two two-level systems (pigments) coupled to high-energy vibrational modes, we find that the high-energy intramolecular vibrational modes can enhance the energy transfer with new coherent transfer channels being opened when the phonon energy matches the detuning between the two pigments. As a result, the energy can be effectively transferred into the acceptor. The effective Hamiltonian is obtained to reveal the strong coherent energy exchange among the donor, the acceptor, and the high-energy intramolecular. A semi-classical explanation of the phonon-assisted mechanism is also shown.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374085,61073048 and 11274010the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20113401110002+3 种基金the 211 Project of Anhui Universitythe Anhui Provincial Natural Science Foundation under Grant No 1408085MA20the Personnel Department of Anhui Provincethe 136 Foundation of Hefei Normal University under Grant No 2014136KJB04
文摘We investigate the dynamics of entanglement in the excitation transfer through a model consisting of three interacting molecules coupled to environments. It is shown that the entanglement can be further enhanced if the distance between the molecules is oscillating. Our results demonstrate that the motional effect plays a constructive role on quantum entanglement in the dynamics of excitation transfer. This mechanism might provide a useful guideline for designing artificial systems to battle against decoherence.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174233)
文摘The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest.This article shows the important role of the intramolecular vibrational modes for excitation energy transfer in the photosynthetic systems.Based on a dimer system consisting of a donor and an acceptor modeled by two two-level systems,in which one of them is coupled to a high-energy vibrational mode,we derive an effective Hamiltonian describing the vibration-assisted coherent energy transfer process in the polaron frame.The effective Hamiltonian reveals in the case that the vibrational mode dynamically matches the energy detuning between the donor and the acceptor,the original detuned energy transfer becomes resonant energy transfer.In addition,the population dynamics and coherence dynamics of the dimer system with and without vibration-assistance are investigated numerically.It is found that,the energy transfer efficiency and the transfer time depend heavily on the interaction strength of the donor and the high-energy vibrational mode,as well as the vibrational frequency.The numerical results also indicate that the initial state and dissipation rate of the vibrational mode have little influence on the dynamics of the dimer system.Results obtained in this article are not only helpful to understand the natural photosynthesis,but also offer an optimal design principle for artificial photosynthesis.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 1179041,11025417,and 10979007)the NSAF (Grant No. 10876043)
文摘The relativistic configuration interaction method is employed to calculate the dielectronic recombination(DR) cross sections of helium-like krypton via the 1s2lnl ’(n = 2,3,...,15) resonances.Then,the resonant transfer excitation(RTE) processes of Kr 34+ colliding with H,He,H 2,and CH x(x = 0-4) targets are investigated under the impulse approximation.The needed Compton profiles of targets are obtained from the Hartree-Fock wave functions.The RTE cross sections are strongly dependent on DR resonant energies and strengths,and the electron momentum distributions of the target.For H 2 and H targets,the ratio of their RTE cross sections changes from 1.85 for the 1s2l2l ’ to 1.88 for other resonances,which demonstrates the weak molecular effects on the Compton profiles of H 2.For CH x(x = 0-4) targets,the main contribution to the RTE cross section comes from the carbon atom since carbon carries 6 electrons;as the number of hydrogen increases in CH x,the RTE cross section almost increases by the same value,displaying the strong separate atom character for the hydrogen.However,further comparison of the individual orbital contributions of C(2p,2s,1s) and CH 4(1t 2,2a 1,1a 1) to the RTE cross sections shows that the molecular effects induce differences of about 25.1%,19.9%,and 0.2% between 2p-1t 2,2s-2a 1,and 1s-1a 1 orbitals,respectively.
文摘Thylakoid membrane preparations of super high-yield hybrid rice (Oryza sativa L.), Liangyoupeijiu (P9) and Shanyou 63 (SH 63) were used for investigating its spectral and time properties by using picosecond time-resolved fluorescence spectrum measuring system. The thylakoid membrane preparations of P9 and SH 63 were excited by an Ar+ laser with a pulse width of 120 ps, repetition rate of 4 MHz and wavelength of 514 nm. The time constants of the excited energy transfer in these two varieties at flowering stage and grain filling stage were calculated from the experimental data. Based on the comparative studies of the time and spectral properties of the excited fluorescence in these ultrafast dynamic experiments the following was found: at both the flowering stage and grain filling stage, the speed of the excitation energy transfer, in photosystem was faster than that in photosystem II in P9 variety; and the speed of the excitation energy transfer at grain filling stage was faster than those at flowering stage for both rice varieties; the experiments also implied that the components and assembly of pigments in SH 63, but not in P9, changed during the process from flowering stage to grain filling stage for in these two rice varieties.
文摘Herein we have employed high-level multi-reference CASSCF and MS-CASPT2 electronic structure methods to systematically study the photochemical mechanism of intramolecularly hydrogen-bonded 2-(2'-hydroxyphenyl)-4-methyloxazole. At the CASSCF level, we have optimized minima, conical intersections, minimum-energy reaction paths relevant to the excited-state intramolecular proton transfer (ESIPT), rotation, photoisomerization, and the excited-state deactivation pathways. The energies of all structures and paths are refined by the MS-CASPT2 method. On the basis of the present results, we found that the ESIPT process in a conformer with the OH... N hydrogen bond is essentially barrierless process; whereas, the ESIPT process is inhibited in the other conformer with the OH... O hydrogen bond. The central single-bond rotation of the S1 enol species is energetically unfavorable due to a large barrier. In addition, the excited-state deactivation of the S1 keto species, as a result of the ultrafast ESIPT, is very efficient because of the existence of two easily-approached keto S1/S0 conical intersections. In stark contrast to the S1 keto species, the decay of the S1 enol species is almostly blocked. The present theoretical study contributes valuable knowledge to the understanding of photochemistry of similar intramolecularly hydrogen-bonded molecular and biological systems.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.61137005 and No.10974023), the Program for Liaoning Excellent Talents in University (No.LJQ2012002), and the Program for New Century Excellent Talents in University (No.NCET-12-0077).
文摘The excited state intramolecular proton transfer (ESIPT) coupled charge transfer of baicalein has been investigated using steady-state spectroscopic experiment and quantum chemistry calculations. The absence of the absorption peak from S1 excited state both in the experi-mental and calculated absorption spectra indicates that S1 is a dark state. The dark excited state S1 results in the very weak fluorescence of solid baicalein in the experiment. The fron- tier molecular orbital and the charge difference densities of baicalein show clearly that the S1 state is a charge-transfer state whereas the S2 state is a locally excited state. The only one stationary point on the potential energy profile of excited state suggests that the ESIPT reaction of baicalein is a barrierless process.
基金Project supported by the National Basic Research Program of China(Grant No.2019YFA0307701)the National Natural Science Foundation of China(Grant No.11874180)the Science and Technology Development Project of Jilin Province of China(Grant No.20190103101JH).
文摘It is of great significance to study the relationship between the excited state intramolecular proton transfer(ESIPT)properties and antioxidant activities of compounds in the field of life sciences.In this work,two novel compounds 5HF-OMe and 5HF-NH2 are designed through introducing a methoxy-and amino-group into the structure of 5-hydroxyflavone(5HF)respectively.The relationship between the ESIPT reaction and antioxidant activities of the three compounds is studied via the density functional theory(DFT)and time-dependent DFT(TD-DFT)methods.The calculated potential energy curves suggest that the rate of ESIPT reaction will gradually slow down from 5HF to 5HF-OMe and 5HF-NH2.In addition,the antioxidant activities of the three compounds gradually enhance from 5HF to 5HF-OMe and 5HF-NH2,which can be seen from the calculated energy gaps and ionization potential values.Interestingly,the above results imply that the rate of ESIPT reaction has a negative relationship with the antioxidant activities of the compounds,i.e.,the slower rate of ESIPT reaction will reflect the higher antioxidant activity of the compound,which will provide valuable reference for detecting the antioxidant activity of compound via the photophysical method.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10274013 and 10374020.
文摘We study the photo-oxidation of bacteriochlorophylls (BChls) in peripheral light harvesting complexes (LH2) from rhodobacter sphaeroides by using the steady absorption and the femtosecond pump-probe measurement, to realize the detailed dynamics of LH2 in the presence of photo-oxidation. The experimental results reveal that BChl-B850 radical cations may act as an additional channel to compete with the unoxidized BChl-B850 molecules for rapidly releasing the excitation energy, while the B800→B850 energy transfer rate is almost unaffected in the oxidation process.
基金supported by the National Natural Science Foundation of China(No.22033006,No.21833006,and No.21773191).
文摘The hierarchical stochastic Schrodinger equations(HSSE)are a kind of numerically exact wavefunction-based approaches suitable for the quantum dynamics simulations in a relatively large system coupled to a bosonic bath.Starting from the influence-functional description of open quantum systems,this review outlines the general theoretical framework of HSSEs and their concrete forms in different situations.The applicability and efficiency of HSSEs are exemplified by the simulations of ultrafast excitation energy transfer processes in large-scale systems.
基金Project supported by the Open Project of State Key Laboratory of Molecular Reaction Dynamics in Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences。
文摘The fluorescence mechanism of HBT-HBZ is investigated in this work. A fluorescent probe is used to detect HClO content in living cells and tap water, and its structure after oxidation by HCl O(HBT-ClO) is discussed based on the density functional theory(DFT) and time-dependent density functional theory(TDDFT). At the same time, the influence of the probe conformation and the proton transfer site within the excited state molecule on the fluorescence mechanism are revealed. Combined with infrared vibrational spectra and atoms-in-molecules theory, the strength of intramolecular hydrogen bonds in HBT-HBZ and HBT-ClO and their isomers are demonstrated qualitatively. The relationship between the strength of intramolecular hydrogen bonds and dipole moments is discussed. The potential energy curves demonstrate the feasibility of intramolecular proton transfer. The weak fluorescence phenomenon of HBT-HBZ in solution is quantitatively explained by analyzing the frontier molecular orbital and hole electron caused by charge separation. Moreover, when strong cyan fluorescence occurs in solution, the corresponding molecular structure should be HBT-ClO(T). The influence of the intramolecular hydrogen bond formation site on the molecule as a whole is also investigated by electrostatic potential analysis.
基金Project supported by the National Basic Research Program of China(Grant No.2019YFA0307701)the National Natural Science Foundation of China(Grant No.11874180)the Young and Middle-aged Scientific and Technological Innovation Leaders and Team Projects in Jilin Province(Grant No.20200301020RQ).
文摘The different fluorescence behavior caused by the excited state proton transfer in 3-hydroxy-4-pyridylisoquinoline(2a)compound has been theoretically investigated.Our calculation results illustrate that the 2a monomer in tetrahydrofuran solvent would not occur proton transfer spontaneously,while the 2a complex in methanol(MeOH)solvent can undergo an asynchronous excited state intramolecular proton transfer(ESIPT)process.The result was confirmed by analyzing the related structural parameters,infrared vibration spectrum and reduced density gradient isosurfaces.Moreover,the potential curves revealed that with the bridging of single MeOH molecular the energy barrier of ESIPT was modulated effectively.It was distinctly reduced to 4.80 kcal/mol in 2a-MeOH complex from 25.01 kcal/mol in 2a monomer.Accordingly,the ESIPT process induced a fluorochromic phenomenon with the assistant of proton-bridge.The elucidation of the mechanism of solvent discoloration will contribute to the design and synthesis of fluorogenic dyes as environment-sensitive probes.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB922204)the National Natural Science Foundation of China(Grant Nos.11574115 and 11704146)
文摘Density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods are used to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited-state intramolecular proton transfer(ESIPT) for the 4-N,N-(diethylamino)-2-hydroxybenzaldehyde(DEAHB). The structures of DEAHB and its hydrogenbonded complex in the ground-state and the excited-state are optimized. In addition, the detailed descriptions of frontier molecular orbitals of the DEAHB monomer and DEAHB-DMSO complex are presented. Moreover, the transition density matrix is worked out to gain deeper insight into the orbitals change. It is hoped that the present work not only elaborates different influence mechanisms between intramolecular and intermolecular hydrogen bonding interactions on the ESIPT process for DEAHB, but also may be helpful to design and develop new materials and applications involved DEAHB systems in the future.
基金Project supported by the Science and Technology Research Project of Henan Province, China (Grant No. 172102210391)the Higher Vocational School Program for Key Teachers from Department of Education of Henan Province, China (Grant No. 2019GZGG042)。
文摘We execute the density functional theory(DFT) and time-dependent density functional theory(TDDFT) approaches to make a detailed exploration about excited state luminescent properties as well as excited state intramolecular proton transfer(ESIPT) mechanism for the novel 2,6-dimethyl phenyl(DMP-HBT-py) system. Firstly, we check and confirm the formation and stabilization of hydrogen bonding interaction for DMP-HBT-py. Via optimized geometrical parameters of primary chemical bond and infrared(IR) spectra, we find O–H··· N hydrogen bond of DMP-HBT-py should be strengthened in S1 state. Insights into frontier molecular orbitals(MOs) analyses, we infer charge redistribution and charge transfer(ICT)phenomena motivate ESIPT trend. Via probing into potential energy curves(PECs) in related electronic states, we come up with the ultrafast ESIPT behavior due to low potential barrier. Furthermore, we search the reaction transition state(TS)structure, the ultrafast ESIPT behavior and mechanism of DMP-HBT-py compound can be re-confirmed. We sincerely wish this work could play roles in further developing novel applications based on DMP-HBT-py compound and in promoting efficient solid emitters in OLEDs in future.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB922204)the National Natural Science Foundation of China(Grant Nos.11574115 and 11704146)the Natural Science Foundation of Jilin Province,China(Grant No.20150101063JC)
文摘Time-dependent density functional theory(TDDFT)method is used to investigate the details of the excited state intramolecular proton transfer(ESIPT)process and the mechanism for temperature effect on the Enol^(*)/Keto^(*)emission ratio for the Me_(2)N-substited flavonoid(MNF)compound.The geometric structures of the S_(0) and S_(1) states are denoted as the Enol,Enol^(*),and Keto*.In addition,the absorption and fluorescence peaks are also calculated.It is noted that the calculated large Stokes shift is in good agreement with the experimental result.Furthermore,our results confirm that the ESIPT process happens upon photoexcitation,which is distinctly monitored by the formation and disappearance of the characteristic peaks of infrared(IR)spectra involved in the proton transfer and in the potential energy curves.Besides,the calculations of highest occupied molecular orbital(HOMO)and lowest unoccupied molecular orbital(LUMO)reveal that the electronegativity change of proton acceptor due to the intramolecular charge redistribution in the S_(1) state induces the ESIPT.Moreover,the thermodynamic calculation for the MNF shows that the Enol^(*)/Keto^(*)emission ratio decreasing with temperature increasing arises from the barrier lowering of ESIPT.
基金Project supported by the National Basic Research Program of China(Grant No.2019YFA0307701)the National Natural Science Foundation of China(Grant No.11874180)the Young and Middle-aged Scientific and Technological Innovation leaders and Team Projects in Jilin Province,China(Grant No.20200301020RQ)。
文摘Excited-state double proton transfer(ESDPT)in the 1-[(2-hydroxy-3-methoxy-benzylidene)-hydrazonomethyl]-naphthalen-2-ol(HYDRAVH_(2))ligand was studied by the density functional theory and time-dependent density functional theory method.The analysis of frontier molecular orbitals,infrared spectra,and non-covalent interactions have crossvalidated that the asymmetric structure has an influence on the proton transfer,which makes the proton transfer ability of the two hydrogen protons different.The potential energy surfaces in both S_(0)and S_1 states were scanned with varying O-H bond lengths.The results of potential energy surface analysis adequately proved that the HYDRAVH_(2)can undergo the ESDPT process in the S_1 state and the double proton transfer process is a stepwise proton transfer mechanism.Our work can pave the way towards the design and synthesis of new molecules.
文摘The excited-state double-proton transfer (ESDPT) mechanism of 2-amino-3-methoxypyridine and acetic acid com- plex is studied by the density functional theory (DFT) and time-dependent DFT with CAM-B3LYP functional. The complex is connected through two different types of inter-molecular hydrogen bonds. After photo-excitation, both hydrogen bonds get strengthened, which can facilitate the ESDPT reaction. The scanned potential energy curve along the proton transfer coordinate indicates that the ESDPT reaction proceeds in a stepwise pattern.
基金supported by the National Key R&D Program of China(grant no.2020YFA0709900)the National Natural Science Foundation of China(grant nos.21971041,22201042,22027805,62134003,and 22104016)+2 种基金the Natural Science Foundation of Fujian Province(grant nos.2020J01447,2022J06008,and 2022J0121)the Research Foundation of Education Bureau of Fujian Province(grant no.JAT210001)the Fuzhou University Testing Fund of Precious Apparatus(grant no.2022T001).
文摘Organic scintillators that efficiently generate bright triplet excitons are of critical importance for highperformance X-ray-excited luminescence in radiation detection.However,the nature of triplet-singlet spinforbidden transitions in these materials often result in long-lived phosphorescence,which is undesirable for ultrafast X-ray detection and imaging.Here we demonstrate that the effect of hybridized local and charge-transfer(HLCT)excited states enables organic scintillators to exhibit highly efficient and fast radioluminescence(RL)in response to X-ray irradiation.Our experimental and theoretical investigation shows that the oxidized 1,8-naphthalimide-phenothiazine dyad(OMNI-PTZ 2)with HLCT-excited states has an enhanced overlap integral of the highest occupied molecular orbital(HOMO)and lowest unoccupied molecular orbital(LUMO)on MNIπ-orbitals,and moderate donor–acceptor electron interactions.As a result,the RL of these crystals exhibits a 61-fold increase and its monoexponential decay lifetime is three orders of magnitude faster compared to its corresponding thermally activated delayed fluorescence(TADF)molecule MNI-PTZ 1.We further demonstrate the practical utility of the OMNI-PTZ 2(G)in high-performance X-ray detection and imaging,achieving an X-ray dose sensitivity of 97 nGy s−1 and an exceptional spatial resolution of 20 lp/mm.Our study provides a promising molecular design principle for utilizing triplet excitons to develop high-efficiency and fast X-ray scintillators for the development of next-generation flexible and stretchable X-ray imaging detectors.