Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may de...Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may depend on the pathological process and cell types involved.Voltage-gated sodium channels(VGSCs)are essential ion channels for the generation of action potentials in neurons,and are involved in various neuroexcitation-related diseases.However,the effects of TGF-β1 on the functional properties of VGSCs and firing properties in cortical neurons remain unclear.In this study,we investigated the effects of TGF-β1 on VGSC function and firing properties in primary cortical neurons from mice.We found that TGF-β1 increased VGSC current density in a dose-and time-dependent manner,which was attributable to the upregulation of Nav1.3 expression.Increased VGSC current density and Nav1.3 expression were significantly abolished by preincubation with inhibitors of mitogen-activated protein kinase kinase(PD98059),p38 mitogen-activated protein kinase(SB203580),and Jun NH2-terminal kinase 1/2 inhibitor(SP600125).Interestingly,TGF-β1 significantly increased the firing threshold of action potentials but did not change their firing rate in cortical neurons.These findings suggest that TGF-β1 can increase Nav1.3 expression through activation of the ERK1/2-JNK-MAPK pathway,which leads to a decrease in the firing threshold of action potentials in cortical neurons under pathological conditions.Thus,this contributes to the occurrence and progression of neuroexcitatory-related diseases of the central nervous system.展开更多
BACKGROUND Malignant transformation(MT)of mature cystic teratoma(MCT)has a poor prognosis,especially in advanced cases.Concurrent chemoradiotherapy(CCRT)has an inhibitory effect on MT.CASE SUMMARY Herein,we present a ...BACKGROUND Malignant transformation(MT)of mature cystic teratoma(MCT)has a poor prognosis,especially in advanced cases.Concurrent chemoradiotherapy(CCRT)has an inhibitory effect on MT.CASE SUMMARY Herein,we present a case in which CCRT had a reduction effect preoperatively.A 73-year-old woman with pyelonephritis was referred to our hospital.Computed tomography revealed right hydronephrosis and a 6-cm pelvic mass.Endoscopic ultrasound-guided fine-needle biopsy(EUS-FNB)revealed squamous cell carci-noma.The patient was diagnosed with MT of MCT.Due to her poor general con-dition and renal malfunction,we selected CCRT,expecting fewer adverse effects.After CCRT,her performance status improved,and the tumor size was reduced;surgery was performed.Five months postoperatively,the patient developed dis-semination and lymph node metastases.Palliative chemotherapy was ineffective.She died 18 months after treatment initiation.CONCLUSION EUS-FNB was useful in the diagnosis of MT of MCT;CCRT suppressed the disea-se and improved quality of life.展开更多
In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, exi...In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, existence, scaling andshifting, etc. Then,we derive several results enfolding partial derivatives and establish amulti-convolution theorem.Further, we apply the aforementioned transform to some classical functions and many types of partial differentialequations involving heat equations,wave equations, Laplace equations, and Poisson equations aswell.Moreover,wedraw some figures to illustrate 3-D contour plots for exact solutions of some selected examples involving differentvalues in their variables.展开更多
Transformer models have emerged as dominant networks for various tasks in computer vision compared to Convolutional Neural Networks(CNNs).The transformers demonstrate the ability to model long-range dependencies by ut...Transformer models have emerged as dominant networks for various tasks in computer vision compared to Convolutional Neural Networks(CNNs).The transformers demonstrate the ability to model long-range dependencies by utilizing a self-attention mechanism.This study aims to provide a comprehensive survey of recent transformerbased approaches in image and video applications,as well as diffusion models.We begin by discussing existing surveys of vision transformers and comparing them to this work.Then,we review the main components of a vanilla transformer network,including the self-attention mechanism,feed-forward network,position encoding,etc.In the main part of this survey,we review recent transformer-based models in three categories:Transformer for downstream tasks,Vision Transformer for Generation,and Vision Transformer for Segmentation.We also provide a comprehensive overview of recent transformer models for video tasks and diffusion models.We compare the performance of various hierarchical transformer networks for multiple tasks on popular benchmark datasets.Finally,we explore some future research directions to further improve the field.展开更多
为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和...为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和长短期记忆网络(Long Short Term Memory,LSTM)的飞机目标轨迹预测方法,即Transformer-Encoder-LSTM模型。新模型可同时提供LSTM和Transformer编码器模块的补充历史信息和基于注意力的信息表示,提高了模型能力。通过与一些经典神经网络模型进行对比分析,发现在数据集上,新方法的平均位移误差减小到0.22,显著优于CNN-LSTMAttention模型的0.35。相比其他网络,该算法能够提取复杂轨迹中的隐藏特征,在面对飞机连续转弯、大机动转弯的复杂轨迹时,能够保证模型的鲁棒性,提升了对于复杂轨迹预测的准确性。展开更多
针对主流Transformer网络仅对输入像素块做自注意力计算而忽略了不同像素块间的信息交互,以及输入尺度单一导致局部特征细节模糊的问题,本文提出一种基于Transformer并用于处理视觉任务的主干网络ConvFormer. ConvFormer通过所设计的多...针对主流Transformer网络仅对输入像素块做自注意力计算而忽略了不同像素块间的信息交互,以及输入尺度单一导致局部特征细节模糊的问题,本文提出一种基于Transformer并用于处理视觉任务的主干网络ConvFormer. ConvFormer通过所设计的多尺度混洗自注意力模块(Channel-Shuffle and Multi-Scale attention,CSMS)和动态相对位置编码模块(Dynamic Relative Position Coding,DRPC)来聚合多尺度像素块间的语义信息,并在前馈网络中引入深度卷积提高网络的局部建模能力.在公开数据集ImageNet-1K,COCO 2017和ADE20K上分别进行图像分类、目标检测和语义分割实验,ConvFormer-Tiny与不同视觉任务中同量级最优网络RetNetY-4G,Swin-Tiny和ResNet50对比,精度分别提高0.3%,1.4%和0.5%.展开更多
基金supported by the Natural Science Foundation of Guangdong Province,Nos.2019A1515010649(to WC),2022A1515012044(to JS)the China Postdoctoral Science Foundation,No.2018M633091(to JS).
文摘Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may depend on the pathological process and cell types involved.Voltage-gated sodium channels(VGSCs)are essential ion channels for the generation of action potentials in neurons,and are involved in various neuroexcitation-related diseases.However,the effects of TGF-β1 on the functional properties of VGSCs and firing properties in cortical neurons remain unclear.In this study,we investigated the effects of TGF-β1 on VGSC function and firing properties in primary cortical neurons from mice.We found that TGF-β1 increased VGSC current density in a dose-and time-dependent manner,which was attributable to the upregulation of Nav1.3 expression.Increased VGSC current density and Nav1.3 expression were significantly abolished by preincubation with inhibitors of mitogen-activated protein kinase kinase(PD98059),p38 mitogen-activated protein kinase(SB203580),and Jun NH2-terminal kinase 1/2 inhibitor(SP600125).Interestingly,TGF-β1 significantly increased the firing threshold of action potentials but did not change their firing rate in cortical neurons.These findings suggest that TGF-β1 can increase Nav1.3 expression through activation of the ERK1/2-JNK-MAPK pathway,which leads to a decrease in the firing threshold of action potentials in cortical neurons under pathological conditions.Thus,this contributes to the occurrence and progression of neuroexcitatory-related diseases of the central nervous system.
文摘BACKGROUND Malignant transformation(MT)of mature cystic teratoma(MCT)has a poor prognosis,especially in advanced cases.Concurrent chemoradiotherapy(CCRT)has an inhibitory effect on MT.CASE SUMMARY Herein,we present a case in which CCRT had a reduction effect preoperatively.A 73-year-old woman with pyelonephritis was referred to our hospital.Computed tomography revealed right hydronephrosis and a 6-cm pelvic mass.Endoscopic ultrasound-guided fine-needle biopsy(EUS-FNB)revealed squamous cell carci-noma.The patient was diagnosed with MT of MCT.Due to her poor general con-dition and renal malfunction,we selected CCRT,expecting fewer adverse effects.After CCRT,her performance status improved,and the tumor size was reduced;surgery was performed.Five months postoperatively,the patient developed dis-semination and lymph node metastases.Palliative chemotherapy was ineffective.She died 18 months after treatment initiation.CONCLUSION EUS-FNB was useful in the diagnosis of MT of MCT;CCRT suppressed the disea-se and improved quality of life.
文摘In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, existence, scaling andshifting, etc. Then,we derive several results enfolding partial derivatives and establish amulti-convolution theorem.Further, we apply the aforementioned transform to some classical functions and many types of partial differentialequations involving heat equations,wave equations, Laplace equations, and Poisson equations aswell.Moreover,wedraw some figures to illustrate 3-D contour plots for exact solutions of some selected examples involving differentvalues in their variables.
基金supported in part by the National Natural Science Foundation of China under Grants 61502162,61702175,and 61772184in part by the Fund of the State Key Laboratory of Geo-information Engineering under Grant SKLGIE2016-M-4-2+4 种基金in part by the Hunan Natural Science Foundation of China under Grant 2018JJ2059in part by the Key R&D Project of Hunan Province of China under Grant 2018GK2014in part by the Open Fund of the State Key Laboratory of Integrated Services Networks under Grant ISN17-14Chinese Scholarship Council(CSC)through College of Computer Science and Electronic Engineering,Changsha,410082Hunan University with Grant CSC No.2018GXZ020784.
文摘Transformer models have emerged as dominant networks for various tasks in computer vision compared to Convolutional Neural Networks(CNNs).The transformers demonstrate the ability to model long-range dependencies by utilizing a self-attention mechanism.This study aims to provide a comprehensive survey of recent transformerbased approaches in image and video applications,as well as diffusion models.We begin by discussing existing surveys of vision transformers and comparing them to this work.Then,we review the main components of a vanilla transformer network,including the self-attention mechanism,feed-forward network,position encoding,etc.In the main part of this survey,we review recent transformer-based models in three categories:Transformer for downstream tasks,Vision Transformer for Generation,and Vision Transformer for Segmentation.We also provide a comprehensive overview of recent transformer models for video tasks and diffusion models.We compare the performance of various hierarchical transformer networks for multiple tasks on popular benchmark datasets.Finally,we explore some future research directions to further improve the field.
文摘为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和长短期记忆网络(Long Short Term Memory,LSTM)的飞机目标轨迹预测方法,即Transformer-Encoder-LSTM模型。新模型可同时提供LSTM和Transformer编码器模块的补充历史信息和基于注意力的信息表示,提高了模型能力。通过与一些经典神经网络模型进行对比分析,发现在数据集上,新方法的平均位移误差减小到0.22,显著优于CNN-LSTMAttention模型的0.35。相比其他网络,该算法能够提取复杂轨迹中的隐藏特征,在面对飞机连续转弯、大机动转弯的复杂轨迹时,能够保证模型的鲁棒性,提升了对于复杂轨迹预测的准确性。
文摘针对主流Transformer网络仅对输入像素块做自注意力计算而忽略了不同像素块间的信息交互,以及输入尺度单一导致局部特征细节模糊的问题,本文提出一种基于Transformer并用于处理视觉任务的主干网络ConvFormer. ConvFormer通过所设计的多尺度混洗自注意力模块(Channel-Shuffle and Multi-Scale attention,CSMS)和动态相对位置编码模块(Dynamic Relative Position Coding,DRPC)来聚合多尺度像素块间的语义信息,并在前馈网络中引入深度卷积提高网络的局部建模能力.在公开数据集ImageNet-1K,COCO 2017和ADE20K上分别进行图像分类、目标检测和语义分割实验,ConvFormer-Tiny与不同视觉任务中同量级最优网络RetNetY-4G,Swin-Tiny和ResNet50对比,精度分别提高0.3%,1.4%和0.5%.