期刊文献+
共找到285,948篇文章
< 1 2 250 >
每页显示 20 50 100
基于Luby Transform码云存储系统性能和时间算法的研究
1
作者 陈海彬 《成都工业学院学报》 2024年第5期47-53,共7页
随着数据的快速增长,如何提高存储数据可靠性以及减少存取响应时间成了一个重要的问题,为提高云存储数据的可靠性和减少存取响应时间,对一种基于Luby Transform码的云存储方案在鲁棒孤子分布、泊松鲁棒孤子分布和复合泊松鲁棒孤子分布... 随着数据的快速增长,如何提高存储数据可靠性以及减少存取响应时间成了一个重要的问题,为提高云存储数据的可靠性和减少存取响应时间,对一种基于Luby Transform码的云存储方案在鲁棒孤子分布、泊松鲁棒孤子分布和复合泊松鲁棒孤子分布中的性能表现进行了研究,提出了一种时间改进方法,通过平衡成功解码概率和检索延迟减少数据检索时间。实验证明采用泊松鲁棒孤子分布和复合泊松鲁棒孤子分布的Luby Transform码的云存储方案更可靠、存储更快速,提出的时间改进方法与经典的鲁棒孤子分布度时间方法相比分别减少70%和67%的数据检索时间。 展开更多
关键词 云存储 Luby transform码 度分布
下载PDF
基于残差U-Net和自注意力Transformer编码器的磁场预测方法 被引量:2
2
作者 金亮 尹振豪 +2 位作者 刘璐 宋居恒 刘元凯 《电工技术学报》 EI CSCD 北大核心 2024年第10期2937-2952,共16页
利用有限元方法对几何结构复杂的电机和变压器进行磁场分析,存在仿真时间长且无法复用的问题。因此,该文提出一种基于残差U-Net和自注意力Transformer编码器的磁场预测方法。首先建立永磁同步电机(PMSM)和非晶合金变压器(AMT)有限元模型... 利用有限元方法对几何结构复杂的电机和变压器进行磁场分析,存在仿真时间长且无法复用的问题。因此,该文提出一种基于残差U-Net和自注意力Transformer编码器的磁场预测方法。首先建立永磁同步电机(PMSM)和非晶合金变压器(AMT)有限元模型,得到深度学习训练所需的数据集;然后将Transformer模块与U-Net模型结合,并引入短残差机制建立ResUnet-Transformer模型,通过预测图像的像素实现磁场预测;最后通过Targeted Dropout算法和动态学习率调整策略对模型进行优化,解决拟合问题并提高预测精度。计算实例证明,ResUnet-Transformer模型在PMSM和AMT数据集上测试集的平均绝对百分比误差(MAPE)均小于1%,且仅需500组样本。该文提出的磁场预测方法能减少实际工况和多工况下精细模拟和拓扑优化的时间和资源消耗,亦是虚拟传感器乃至数字孪生的关键实现方法之一。 展开更多
关键词 有限元方法 电磁场 深度学习 U-Net transformER
下载PDF
FMA-DETR:一种无编码器的Transformer目标检测方法 被引量:1
3
作者 周全 倪英豪 +2 位作者 莫玉玮 康彬 张索非 《信号处理》 CSCD 北大核心 2024年第6期1160-1170,共11页
DETR是第一个将Transformer应用于目标检测的视觉模型。在DETR结构中,Transformer编码器对已高度编码的图像特征进行再编码,这在一定程度上导致了网络功能的重复。此外,由于Transformer编码器具有多层深度堆叠的结构和巨大的参数量,导... DETR是第一个将Transformer应用于目标检测的视觉模型。在DETR结构中,Transformer编码器对已高度编码的图像特征进行再编码,这在一定程度上导致了网络功能的重复。此外,由于Transformer编码器具有多层深度堆叠的结构和巨大的参数量,导致网络优化变得困难,模型收敛速度缓慢。本文设计了一种无编码器的Transformer目标检测网络模型。由于不需要引入Transformer编码器,本文的模型比DETR参数量更小、计算量更低、模型收敛速度更快。但是,直接去除Transformer编码器将降低网络的表达能力,导致Transformer解码器无法从数量庞大的图像特征中关注到包含目标的图像特征,从而使检测性能大幅降低。为了缓解这个问题,本文提出了一种混合特征注意力(fusion-feature mixing attention,FMA)机制,它通过自适应特征混合和通道交叉注意力弥补检测网络特征表达能力的下降,将其应用于Transformer解码器可以减轻由于去除Transformer编码器带来的性能降低。在MS-COCO数据集上,本文网络模型(称为FMA-DETR)实现了与DETR相近的性能表现,同时本文的模型拥有更快的收敛速度、更小的参数量以及更低的计算量。本文还进行了大量消融实验来验证所提出方法的有效性。 展开更多
关键词 目标检测 transformER DETR 混合注意力
下载PDF
空间可分离注意力的跨尺度编码Transformer遥感图像道路提取方法
4
作者 田青 张瑶 +1 位作者 张正 吕其修 《计算机工程与应用》 CSCD 北大核心 2024年第23期219-228,共10页
遥感图像的道路分割任务是遥感应用领域的一个研究热点,一直受到广泛的关注。由于遥感图像天然具备背景复杂、目标密集等特性,全局语义信息的构建对于准确提取遥感图像中道路是至关重要的。因此,基于Transformer模型进行优化,提出了基... 遥感图像的道路分割任务是遥感应用领域的一个研究热点,一直受到广泛的关注。由于遥感图像天然具备背景复杂、目标密集等特性,全局语义信息的构建对于准确提取遥感图像中道路是至关重要的。因此,基于Transformer模型进行优化,提出了基于空间可分离注意力的跨尺度令牌嵌入Transformer遥感道路提取模型Cross-RoadFormer。具体而言,针对图像中道路尺度不统一的问题,设计了跨尺度编码层,将不同尺度的特征编码作为一个令牌嵌入整体,作为Transformer的输入,解决了Transformer跨尺度交互的问题;此外,提出了一种空间可分离注意力,其中,局部分组注意力获取细粒度、短距离信息,全局采样注意力捕获长距离、全局上下文信息,在保证道路提取准确度的前提下,降低了模型的计算量。在Massachusetts数据集和DeepGlobe数据集上的实验表明,提出的Cross-RoadFormer都实现了更高的IoU(intersection over union),分别为68.40%和58.04%,展现了该方法的优越性。 展开更多
关键词 道路提取 遥感图像 transformER 注意力机制
下载PDF
基于多模态掩码Transformer网络的社会事件分类
5
作者 陈宏 钱胜胜 +2 位作者 李章明 方全 徐常胜 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期579-587,共9页
多模态社会事件分类的关键是充分且准确地利用图像和文字2种模态的特征。然而,现有的大多数方法存在以下局限性:简单地将事件的图像特征和文本特征连接起来,不同模态之间存在不相关的上下文信息导致相互干扰。因此,仅仅考虑多模态数据... 多模态社会事件分类的关键是充分且准确地利用图像和文字2种模态的特征。然而,现有的大多数方法存在以下局限性:简单地将事件的图像特征和文本特征连接起来,不同模态之间存在不相关的上下文信息导致相互干扰。因此,仅仅考虑多模态数据模态间的关系是不够的,还要考虑模态之间不相关的上下文信息(即区域或单词)。为克服这些局限性,提出一种新颖的基于多模态掩码Transformer网络(MMTN)模型的社会事件分类方法。通过图-文编码网络来学习文本和图像的更好的表示。将获得的图像和文本表示输入多模态掩码Transformer网络来融合多模态信息,并通过计算多模态信息之间的相似性,对多模态信息的模态间的关系进行建模,掩盖模态之间的不相关上下文。在2个基准数据集上的大量实验表明:所提模型达到了最先进的性能。 展开更多
关键词 多模态 社会事件分类 社交媒体 表示学习 多模态transformer网络
下载PDF
基于CNN和Transformer并行编码的腹部多器官图像分割
6
作者 赵欣 李森 李智生 《吉林大学学报(理学版)》 CAS 北大核心 2024年第5期1145-1154,共10页
针对现有方法在腹部中小器官图像分割性能方面存在的不足,提出一种基于局部和全局并行编码的网络模型用于腹部多器官图像分割.首先,设计一种提取多尺度特征信息的局部编码分支;其次,全局特征编码分支采用分块Transformer,通过块内Transf... 针对现有方法在腹部中小器官图像分割性能方面存在的不足,提出一种基于局部和全局并行编码的网络模型用于腹部多器官图像分割.首先,设计一种提取多尺度特征信息的局部编码分支;其次,全局特征编码分支采用分块Transformer,通过块内Transformer和块间Transformer的组合,既捕获了全局的长距离依赖信息又降低了计算量;再次,设计特征融合模块,以融合来自两条编码分支的上下文信息;最后,设计解码模块,实现全局信息与局部上下文信息的交互,更好地补偿解码阶段的信息损失.在Synapse多器官CT数据集上进行实验,与目前9种先进方法相比,在平均Dice相似系数(DSC)和Hausdorff距离(HD)指标上都达到了最佳性能,分别为83.10%和17.80 mm. 展开更多
关键词 多器官图像分割 分块transformer 特征融合
下载PDF
联合多视角Transformer编码与在线融合互学习的乳腺癌病理图像分类模型
7
作者 李广丽 叶艺源 +3 位作者 吴光庭 李传秀 吕敬钦 张红斌 《电子学报》 EI CAS CSCD 北大核心 2024年第7期2369-2381,共13页
乳腺癌是女性最常见的癌症.单一网络在乳腺癌病理图像分类中存在缺陷,卷积神经网络无法提取全局上下文,而Transformer不能准确描述局部细节.本文提出联合多视角Transformer编码与在线融合互学习的乳腺癌病理图像分类模型(Multi-View Tra... 乳腺癌是女性最常见的癌症.单一网络在乳腺癌病理图像分类中存在缺陷,卷积神经网络无法提取全局上下文,而Transformer不能准确描述局部细节.本文提出联合多视角Transformer编码与在线融合互学习的乳腺癌病理图像分类模型(Multi-View Transformer Online Fusion Mutual Learning,MVT-OFML).采用ResNet-50(Residual Network-50)提取图像局部特征,设计多视角Transformer编码模块,捕获图像中全局上下文;联合Logits和中间特征层构建OFML框架,实现ResNet-50与多视角Transformer编码模块间双向传递知识,使2个网络优势互补以完成乳腺癌病理图像分类.实验表明,在BreakHis和BACH数据集上,MVT-OFML的准确率比最强基线分别提升0.90%和2.26%,F1均值比最强基线分别提升4.75%和3.21%. 展开更多
关键词 乳腺癌 病理图像分类 多视角transformer 卷积神经网络 在线融合互学习
下载PDF
孪生Transformer编码胶囊数控机床主轴故障分类网络研究
8
作者 孙惠娟 邓聪颖 《机床与液压》 北大核心 2024年第22期103-109,共7页
主轴作为数控机床最重要的机械模块之一,及时检测其故障可保障机床的运转效能和加工精度。由此,提出一种孪生Transformer编码胶囊数控机床主轴故障分类网络。利用二维化预处理模块,得到较完整的原始数控机床主轴轴承振动数据;采用改进Tr... 主轴作为数控机床最重要的机械模块之一,及时检测其故障可保障机床的运转效能和加工精度。由此,提出一种孪生Transformer编码胶囊数控机床主轴故障分类网络。利用二维化预处理模块,得到较完整的原始数控机床主轴轴承振动数据;采用改进Transformer编码特征提取模块,获得深层次振动信号特征;通过高级胶囊特征转移网络实现特征映射;最后,使用孪生Transformer编码胶囊分类网络完成数控机床主轴故障样本的分类。选择XK7145型铣床完成健康轴承、内外圈故障轴承及滚珠故障下的无磨损刀具与磨损刀具故障诊断实验。结果表明:文中方法的平均主轴故障诊断准确率可达95.1%,相对于ISERAVF-net、VSCPC-net方法的平均准确率升高6.9%和12.3%,且文中方法的可视化分类效果较优,采用文中方法检测主轴故障的实验效果更佳。 展开更多
关键词 主轴 transformer编胶囊 铣床 可视化
下载PDF
基于Transformer紧凑编码的局部近重复视频检测算法
9
作者 王萍 余圳煌 鲁磊 《计算机科学》 CSCD 北大核心 2024年第5期108-116,共9页
针对现有局部近重复视频检测算法特征存储消耗大、整体查询效率低、提取特征时并未考虑近重复帧之间细微的语义差异等问题,文中提出了一种基于Transformer紧凑编码的局部近重复视频检测算法。首先,提出了一个基于Transformer的特征编码... 针对现有局部近重复视频检测算法特征存储消耗大、整体查询效率低、提取特征时并未考虑近重复帧之间细微的语义差异等问题,文中提出了一种基于Transformer紧凑编码的局部近重复视频检测算法。首先,提出了一个基于Transformer的特征编码器,其学习了大量近重复帧之间细微的语义差异,可以在编码帧特征时对各个区域特征图引入自注意力机制,在有效降低帧特征维度的同时也提高了编码后特征的表示性。该特征编码器通过孪生网络训练得到,该网络不需要负样本就可以有效学习近重复帧之间的相似语义信息,因此无需沉重和困难的难负样本标注工作,使得训练过程更加简易和高效。其次,提出了一个基于视频自相似度矩阵的关键帧提取方法,可以从视频中提取丰富但不冗余的关键帧,从而使关键帧特征序列能够更全面地描述原视频内容,提升算法的性能,同时也大幅减少了存储和计算冗余关键帧带来的开销。最后,基于关键帧的低维紧凑编码特征,采用基于图网络的时间对齐算法,实现局部近重复视频片段的检测和定位。该算法在公开的局部近重复视频检测数据集VCDB上取得了优于现有算法的实验性能。 展开更多
关键词 局部近重复视频检测 transformER 视频自相似度矩阵 关键帧提取
下载PDF
基于视觉Transformer和双解码器的红外小目标检测方法
10
作者 代少升 刘科生 +3 位作者 黄炼 贺自强 毛兴华 任汶皓 《红外技术》 CSCD 北大核心 2024年第9期1070-1080,共11页
当前基于卷积神经网络的红外小目标检测方法在编码器阶段受限于感受野,且解码器在多尺度特征融合中缺乏有效的特征交互。本文提出了一种基于编码器-解码器结构的新方法,针对现有红外小目标检测方法中的问题进行改进。该方法使用视觉Tran... 当前基于卷积神经网络的红外小目标检测方法在编码器阶段受限于感受野,且解码器在多尺度特征融合中缺乏有效的特征交互。本文提出了一种基于编码器-解码器结构的新方法,针对现有红外小目标检测方法中的问题进行改进。该方法使用视觉Transformer作为编码器,能够有效地提取红外小目标图像的多尺度特征。视觉Transformer是一种新兴的深度学习架构,其通过自注意力机制捕捉图像中像素之间的全局关系,以处理长程依赖性和上下文信息。此外,本文还设计了一个由交互式解码器和辅助解码器组成的双解码器模块,旨在提高解码器对红外小目标的重构能力。该双解码器模块能够充分利用不同特征之间的互补信息,促进深层特征和浅层特征之间的交互,并通过将两个解码器的结果进行叠加,以更好地重构红外小目标。在广泛使用的公共数据集上的实验结果表明,本文提出的方法在F1和mIoU两个评价指标上的性能优于其他对比方法。 展开更多
关键词 红外小目标检测 视觉transformer 多尺度特征融合 编解结构
下载PDF
基于Transformer模型的时序数据预测方法综述
11
作者 孟祥福 石皓源 《计算机科学与探索》 北大核心 2025年第1期45-64,共20页
时序数据预测(TSF)是指通过分析历史数据的趋势性、季节性等潜在信息,预测未来时间点或时间段的数值和趋势。时序数据由传感器生成,在金融、医疗、能源、交通、气象等众多领域都发挥着重要作用。随着物联网传感器的发展,海量的时序数据... 时序数据预测(TSF)是指通过分析历史数据的趋势性、季节性等潜在信息,预测未来时间点或时间段的数值和趋势。时序数据由传感器生成,在金融、医疗、能源、交通、气象等众多领域都发挥着重要作用。随着物联网传感器的发展,海量的时序数据难以使用传统的机器学习解决,而Transformer在自然语言处理和计算机视觉等领域的诸多任务表现优秀,学者们利用Transformer模型有效捕获长期依赖关系,使得时序数据预测任务取得了飞速发展。综述了基于Transformer模型的时序数据预测方法,按时间梳理了时序数据预测的发展进程,系统介绍了时序数据预处理过程和方法,介绍了常用的时序预测评价指标和数据集。以算法框架为研究内容系统阐述了基于Transformer的各类模型在TSF任务中的应用方法和工作原理。通过实验对比了各个模型的性能、优点和局限性,并对实验结果展开了分析与讨论。结合Transformer模型在时序数据预测任务中现有工作存在的挑战提出了该方向未来发展趋势。 展开更多
关键词 深度学习 时序数据预测 数据预处理 transformer模型
下载PDF
一种基于Transformer编码器与LSTM的飞机轨迹预测方法 被引量:1
12
作者 李明阳 鲁之君 +1 位作者 曹东晶 曹世翔 《航天返回与遥感》 CSCD 北大核心 2024年第2期163-176,共14页
为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和... 为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和长短期记忆网络(Long Short Term Memory,LSTM)的飞机目标轨迹预测方法,即Transformer-Encoder-LSTM模型。新模型可同时提供LSTM和Transformer编码器模块的补充历史信息和基于注意力的信息表示,提高了模型能力。通过与一些经典神经网络模型进行对比分析,发现在数据集上,新方法的平均位移误差减小到0.22,显著优于CNN-LSTMAttention模型的0.35。相比其他网络,该算法能够提取复杂轨迹中的隐藏特征,在面对飞机连续转弯、大机动转弯的复杂轨迹时,能够保证模型的鲁棒性,提升了对于复杂轨迹预测的准确性。 展开更多
关键词 轨迹预测 transformer编 神经网络 飞机目标 transformer-Encoder-LSTM模型
下载PDF
基于Transformer_LSTM编解码器模型的船舶轨迹异常检测方法 被引量:2
13
作者 李可欣 郭健 +3 位作者 李冉冲 王宇君 李宗明 缪坤 《中国舰船研究》 CSCD 北大核心 2024年第2期223-232,共10页
[目的]为提升船舶轨迹异常检测的精度和效率,解决传统异常检测方法存在的特征表征能力有限、补偿精度不足、容易出现梯度消失、过拟合等问题,提出一种基于Transformer_LSTM编解码器模型的无监督船舶轨迹异常检测方法。[方法]该方法基于... [目的]为提升船舶轨迹异常检测的精度和效率,解决传统异常检测方法存在的特征表征能力有限、补偿精度不足、容易出现梯度消失、过拟合等问题,提出一种基于Transformer_LSTM编解码器模型的无监督船舶轨迹异常检测方法。[方法]该方法基于编码器解码器架构,由Transformer_LSTM模块替代传统神经网络实现轨迹特征提取和轨迹重构;将Transformer嵌入LSTM的递归机制,结合循环单元和注意力机制,利用自注意力和交叉注意力实现对循环单元状态向量的计算,实现对长序列模型的有效构建;通过最小化重构输出和原始输入之间的差异,使模型学习一般轨迹的特征和运动模式,将重构误差大于异常阈值的轨迹判定为异常轨迹。[结果]采用2021年1月的船舶AIS数据进行实验,结果表明,模型在准确率、精确率以及召回率上相较于LOF,DBSCAN,VAE,LSTM等经典模型有着明显提升;F1分数相较于VAE_LSTM模型提升约8.11%。[结论]该方法的异常检测性能在各项指标上显著优于传统算法,可有效、可靠地运用于海上船舶轨迹异常检测。 展开更多
关键词 异常检测 深度学习 器解 transformER 长短期记忆 轨迹重建
下载PDF
基于Transformer编码器和残差网络的信贷违约预测模型
14
作者 张瑶娜 卓佩妍 +2 位作者 刘自金 刘炜 宋友 《计算机应用》 CSCD 北大核心 2024年第S01期324-329,共6页
针对传统信贷违约预测模型对高维稀疏类别特征缺乏有效处理,性能受到人工特征工程影响较大的问题,提出一种基于Transformer编码器和残差网络的信贷违约预测模型(TE-ResNet)。该模型首先利用嵌入层对类别特征进行处理,将它们转化为低维... 针对传统信贷违约预测模型对高维稀疏类别特征缺乏有效处理,性能受到人工特征工程影响较大的问题,提出一种基于Transformer编码器和残差网络的信贷违约预测模型(TE-ResNet)。该模型首先利用嵌入层对类别特征进行处理,将它们转化为低维度的稠密向量;然后将连续特征和嵌入后的类别特征连接,输入到堆叠的Transformer编码器中进行特征提取,捕捉输入特征之间的关系,得到有用信息的高层特征表示;最后使用结合了通道注意力机制的一维残差网络模型进行违约预测。在训练过程中,模型采用加权交叉熵损失函数,以解决信贷数据不平衡的问题。实验结果表明,与8种主流基准模型的最佳表现相比,TE-ResNet在LendingClub数据集、天池贷款数据集上的各项指标均有提升:AUC指标分别提升了0.58%和2.85%,F1-Score指标分别提升了0.85%和11.92%,G-mean指标分别提升了2.94%和16.19%。TE-ResNet能够提高信贷违约预测的性能,减少人工特征工程,实现端到端的学习。因此,TE-ResNet模型具有实际应用的潜力,并可为信贷业务提供更加精确和可靠的风险评估服务。 展开更多
关键词 深度学习 残差网络 transformER 注意力机制 信贷违约预测
下载PDF
融合双阶段特征与Transformer编码的交互式图像分割
15
作者 封筠 张天 +2 位作者 史屹琛 王辉 胡晶晶 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第6期831-843,共13页
为了快速、精确地分割用户感兴趣的前景目标,获得高质量且低成本的标注分割数据,提出一种基于双阶段特征融合与Transformer编码的交互式图像分割算法.首先采用轻量化Transformer骨干网络对输入图像提取多尺度特征编码,更好地利用上下文... 为了快速、精确地分割用户感兴趣的前景目标,获得高质量且低成本的标注分割数据,提出一种基于双阶段特征融合与Transformer编码的交互式图像分割算法.首先采用轻量化Transformer骨干网络对输入图像提取多尺度特征编码,更好地利用上下文信息;然后使用点击交互的方式引入主观先验知识,依次通过初级与加强阶段将交互特征融入Transformer网络;最后结合空洞卷积、注意力机制和多层感知机对骨干网络获取的特征图解码.实验结果表明,所提算法在GrabCut,Berkeley和DAVIS数据集上的mNoC@90%值分别达到2.18,4.04和7.39,优于其他对比算法;且算法的时间与空间复杂度低于f-BRS-B,对交互点击位置及点击类型的扰动变化具有较好的稳定性,说明该算法能够快速、精确与稳定地分割用户感兴趣目标,提升用户交互的使用体验感. 展开更多
关键词 交互式图像分割 深度学习 transformer编 交互特征融合 轻量化网络
下载PDF
基于Transformer的业务流程剩余时间预测及编码方式评估方法
16
作者 刘聪 张振 +3 位作者 郭娜 孟晓亮 徐兴荣 王雷 《山东科技大学学报(自然科学版)》 CAS 北大核心 2024年第6期103-112,共10页
业务流程剩余时间预测对于预防流程超时风险有着重要意义。深度学习模型的应用显著提高了剩余时间预测的准确率,但由于输入信息单一,难以发挥模型自身优势;此外,有效的活动编码包含丰富的上下文关系,有助于提升预测效果。针对上述问题,... 业务流程剩余时间预测对于预防流程超时风险有着重要意义。深度学习模型的应用显著提高了剩余时间预测的准确率,但由于输入信息单一,难以发挥模型自身优势;此外,有效的活动编码包含丰富的上下文关系,有助于提升预测效果。针对上述问题,本研究提出一种基于Transformer的业务流程剩余时间预测方法。首先,基于Transformer网络架构构建剩余时间预测模型,选取活动和时间属性作为模型的输入特征。然后,为捕获业务流程活动间的时序关系,选取4种主流自然语言处理领域的编码方式训练活动的表示向量,以编码方式与剩余时间预测任务的匹配性、编码维度两个角度对4种编码方式进行评估。最后,采用6个真实事件日志进行实验测试,结果表明本研究所提方法与已有方法相比预测准确率显著提升,采用连续词袋模型方式训练的活动编码取得了更好的预测效果,并且基于不同规模的事件日志推荐了适用的编码维度。 展开更多
关键词 transformER 业务流程 剩余时间预测 深度学习 方式
下载PDF
基于DRSN融合Transformer编码器的轴承故障诊断方法研究
17
作者 陈松 陈文华 张文广 《自动化与仪表》 2024年第5期103-108,共6页
针对轴承故障在复杂工况环境中诊断准确率低和泛化性能弱的问题,提出了一种基于深度残差收缩网络(deep residual shrinkage network,DRSN)融合Transformer编码器的轴承故障诊断方法。首先,采用DRSN通过软阈值模块自动去掉振动信号中的... 针对轴承故障在复杂工况环境中诊断准确率低和泛化性能弱的问题,提出了一种基于深度残差收缩网络(deep residual shrinkage network,DRSN)融合Transformer编码器的轴承故障诊断方法。首先,采用DRSN通过软阈值模块自动去掉振动信号中的噪声信息,并使用注意力机制增强提取到的特征;然后,采用Transformer编码器来进一步解决振动信号中的长期依赖性问题;最后,利用Softmax函数实现多故障模式识别。在凯斯西储大学轴承数据集上通过不同噪声等级对提出的模型进行测试,实验结果表明,该方法实现了对轴承故障分类,强噪声环境下准确率更高,训练时间更快。 展开更多
关键词 故障诊断 轴承 深度残差收缩网络 transformer编
下载PDF
基于Transformer的多编码器端到端语音识别 被引量:1
18
作者 庞江飞 孙占全 《电子科技》 2024年第4期1-7,共7页
当前广泛使用的Transformer模型具有良好的全局依赖关系捕捉能力,但其在浅层时容易忽略局部特征信息。针对该问题,文中提出了一种使用多个编码器来改善语音特征信息提取能力的方法。通过附加一个额外的卷积编码器分支来强化对局部特征... 当前广泛使用的Transformer模型具有良好的全局依赖关系捕捉能力,但其在浅层时容易忽略局部特征信息。针对该问题,文中提出了一种使用多个编码器来改善语音特征信息提取能力的方法。通过附加一个额外的卷积编码器分支来强化对局部特征信息的捕捉,弥补浅层Transformer对局部特征信息的忽视,有效实现音频特征序列全局和局部依赖关系的融合,即提出了基于Transformer的多编码器模型。在开源中文普通话数据集Aishell-1上的实验表明,在没有外部语言模型的情况下,相比于Transformer模型,基于Transformer的多编码器模型的字符错误率降低了4.00%。在内部非公开的上海话方言数据集上,文中所提模型的性能提升更加明显,其字符错误率从19.92%降低至10.31%,降低了48.24%。 展开更多
关键词 transformER 语音识别 端到端 深度神经网络 多编 多头注意力 特征融合 卷积分支网络
下载PDF
融合模体感知和图Transformer编码的社区检测
19
作者 郭兴君 李晓红 +1 位作者 史婉媱 高文超 《计算机工程与科学》 CSCD 北大核心 2024年第11期2081-2090,共10页
针对已有社区检测方法存在忽略高阶结构信息,且在信息引入过程中极易产生碎片的问题,提出了一种融合模体感知和图Transformer编码的社区检测方法。首先,将原图中的极大完全子图视为模体,并以模体为顶点对原图进行重构,捕获模体邻接矩阵... 针对已有社区检测方法存在忽略高阶结构信息,且在信息引入过程中极易产生碎片的问题,提出了一种融合模体感知和图Transformer编码的社区检测方法。首先,将原图中的极大完全子图视为模体,并以模体为顶点对原图进行重构,捕获模体邻接矩阵。同时,使用混阶外切边编码获取原图的残留边信息,解决碎片问题,利用位置编码和内权边编码捕获重构图上的位置信息和边信息。其次,使用图Transformer提取原图携带的初始特征,再对编码所得的位置信息和边信息及初始特征进行融合,获得模体嵌入矩阵,实现社区检测。最后,在几个不同数据集上的实验结果表明,所提方法可以有效提高社区检测的性能,而且,对重叠社区检测和多社区公共顶点检测也是有效的。 展开更多
关键词 社区检测 transformer 模体 图编
下载PDF
ViTAU:基于Vision transformer和面部动作单元的面瘫识别与分析
20
作者 高嘉 蔡文浩 +1 位作者 赵俊莉 段福庆 《工程科学学报》 EI 北大核心 2025年第2期351-363,共13页
面部神经麻痹(Facial nerve paralysis,FNP),通常称为贝尔氏麻痹或面瘫,对患者的日常生活和心理健康产生显著影响,面瘫的及时识别和诊断对于患者的早期治疗和康复至关重要.随着深度学习和计算机视觉技术的快速发展,面瘫的自动识别变得可... 面部神经麻痹(Facial nerve paralysis,FNP),通常称为贝尔氏麻痹或面瘫,对患者的日常生活和心理健康产生显著影响,面瘫的及时识别和诊断对于患者的早期治疗和康复至关重要.随着深度学习和计算机视觉技术的快速发展,面瘫的自动识别变得可行,为诊断提供了一种更准确和客观的方式.目前的研究主要集中关注面部的整体变化,而忽略了面部细节的重要性.面部不同部位对识别结果的影响力并不相同,这些研究尚未对面部各个区域进行细致区分和分析.本项研究引入结合Vision transformer(ViT)模型和动作单元(Action unit,AU)区域检测网络的创新性方法用于面瘫的自动识别及区域分析.ViT模型通过自注意力机制精准识别是否面瘫,同时,基于AU的策略从StyleGAN2模型提取的特征图中,利用金字塔卷积神经网络分析受影响区域.这一综合方法在YouTube Facial Palsy(YFP)和经过扩展的Cohn Kanade(CK+)数据集上的实验中分别达到99.4%的面瘫识别准确率和81.36%的面瘫区域识别准确率.通过与最新方法的对比,实验结果展示了所提的自动面瘫识别方法的有效性. 展开更多
关键词 transformER 面部动作单元 多分辨率特征图 生成器 热力图回归
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部