期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Structural transformation and energy analysis for pile-up dislocations at triple junction of grain boundary 被引量:1
1
作者 Ying-jun GAO Zong-ji HUANG +4 位作者 Qian-qian DENG Kun LIAO Yi-xuan LI Xiao-Ai YI Zhi-rong LUO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第1期45-63,共19页
An energy model for the structure transformation of pile-ups of grain boundary dislocations(GBD)at the triple-junction of the grain boundary of ultrafine-grain materials was proposed.The energy of the pile-up of the G... An energy model for the structure transformation of pile-ups of grain boundary dislocations(GBD)at the triple-junction of the grain boundary of ultrafine-grain materials was proposed.The energy of the pile-up of the GBD in the system was calculated by the energy model,the critical geometric and mechanical conditions for the structure transformation of head dislocation of the pile-up were analyzed,and the influence of the number density of the dislocations and the angle between Burgers vectors of two decomposed dislocations on the transformation mode of head dislocation was discussed.The results show when the GBD is accumulated at triple junction,the head dislocation of the GBD is decomposed into two Burgers vectors of these dislocations unless the angle between the two vectors is less than 90°,and the increase of applied external stress can reduce the energy barrier of the dislocation decomposition.The mechanism that the ultrafine-grained metal material has both high strength and plasticity owing to the structure transformation of the pile-up of the GBD at the triple junction of the grain boundary is revealed. 展开更多
关键词 triple junction of grain boundary dislocation pile-up dislocation structural transformation energy model for pile-up ultrafine-grain materials
下载PDF
Effect of boron on bainitic transformation kinetics after ausforming in low carbon steels 被引量:4
2
作者 Binbin He Wei Xu Mingxin Huang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第12期1494-1503,共10页
The addition of boron(B) is frequently adopted to increase the hardenability of bainitic steels. Although it is well known that B can retard the bainitic transformation kinetics, it is still not clear how the B affe... The addition of boron(B) is frequently adopted to increase the hardenability of bainitic steels. Although it is well known that B can retard the bainitic transformation kinetics, it is still not clear how the B affects the bainitic transformation kinetics after ausforming. By systematic high-resolution dilatometry tests, the present work reveals that the bainitic transformation kinetics is accelerated in a low C steel with B addition after ausforming from all aspects including incubation time, transformation velocity and transformed volume fraction. In contrast, for the same steel without B addition, both transformation velocity and transformed volume fraction are retarded after ausforming. It is proposed that ausforming can reduce B segregation at prior austenite grain boundaries as some boron can interact with dislocations and therefore enhance bainite nucleation rate. Furthermore, auforming can refine the average volume of bainitic sheaf. Based on the competing mechanisms between increase of nucleation rate and refinement of bainitic sheaf, the effects of B and ausforming on the bainitic transformation kinetics are discussed. 展开更多
关键词 Ausforming Boron Bainitic transformation dislocations Cottrell atmosphere
原文传递
Effect of Warm-Rolled Pearlite Microstructural Features on Austenitic Transformation 被引量:1
3
作者 YAO Sheng-jie DU Lin-xiu LIU Xiang-hua WANG Guo-dong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2009年第4期55-59,共5页
The austenite transformation characteristics for various warm-rolled pearlite during rapid heating were investigated. The results indicate that the start temperature (Ts) is sensitive to the microstructural feature ... The austenite transformation characteristics for various warm-rolled pearlite during rapid heating were investigated. The results indicate that the start temperature (Ts) is sensitive to the microstructural feature of pearlite, whereas the dislocation plays an important role in the transformation rate; at the same time, the uniformity of austenite grains is more or less affected by the amount of spheroidized pearlite. A critical effect on the state of austenite grain is created through the influence of initial microstructures on the start temperature of transformation. 展开更多
关键词 warm rolling pearlite dislocation austenite transformation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部