Reliability allocation of computerized numerical controlled(CNC)lathes is very important in industry.Traditional allocation methods only focus on high-failure rate components rather than moderate failure rate compon...Reliability allocation of computerized numerical controlled(CNC)lathes is very important in industry.Traditional allocation methods only focus on high-failure rate components rather than moderate failure rate components,which is not applicable in some conditions.Aiming at solving the problem of CNC lathes reliability allocating,a comprehensive reliability allocation method based on cubic transformed functions of failure modes and effects analysis(FMEA)is presented.Firstly,conventional reliability allocation methods are introduced.Then the limitations of direct combination of comprehensive allocation method with the exponential transformed FMEA method are investigated.Subsequently,a cubic transformed function is established in order to overcome these limitations.Properties of the new transformed functions are discussed by considering the failure severity and the failure occurrence.Designers can choose appropriate transform amplitudes according to their requirements.Finally,a CNC lathe and a spindle system are used as an example to verify the new allocation method.Seven criteria are considered to compare the results of the new method with traditional methods.The allocation results indicate that the new method is more flexible than traditional methods.By employing the new cubic transformed function,the method covers a wider range of problems in CNC reliability allocation without losing the advantages of traditional methods.展开更多
To investigate the influence of the bedding angle,β,on the mechanical properties and rockburst proneness,uniaxial compression tests were conducted using cylindrical phyllite specimens with different bedding angles.Ac...To investigate the influence of the bedding angle,β,on the mechanical properties and rockburst proneness,uniaxial compression tests were conducted using cylindrical phyllite specimens with different bedding angles.According to the results,the peak stress,peak strain,cumulative acoustic emission counts,and potential energy of the elastic strain exhibited a U-shaped change trend.With an increase in β from 0°to 90°,the failure mode transformed from tensile splitting failure along the bedding plane to shear slip failure along the weak bedding plane.Finally,the failure mode evolved into a tensile splitting failure across the bedding plane.When β=15°,30°,and 45°,the phyllite specimens exhibited strong,slight,and moderate rockburst proneness,with strong,slight,and moderate shear slip rockbursts,respectively.When β=0°,60°,75°,and 90°,the phyllite specimens had extremely strong rockburst proneness,and an extremely strong strain rockburst occurred.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51135003,51205050,U1234208)Key National Science & Technology Special Project on"High-Grade CNC Machine Tools and Basic Manufacturing Equipments"(Grant No.2013ZX04011011)+1 种基金Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110042120020)Fundamental Research Funds for the Central
文摘Reliability allocation of computerized numerical controlled(CNC)lathes is very important in industry.Traditional allocation methods only focus on high-failure rate components rather than moderate failure rate components,which is not applicable in some conditions.Aiming at solving the problem of CNC lathes reliability allocating,a comprehensive reliability allocation method based on cubic transformed functions of failure modes and effects analysis(FMEA)is presented.Firstly,conventional reliability allocation methods are introduced.Then the limitations of direct combination of comprehensive allocation method with the exponential transformed FMEA method are investigated.Subsequently,a cubic transformed function is established in order to overcome these limitations.Properties of the new transformed functions are discussed by considering the failure severity and the failure occurrence.Designers can choose appropriate transform amplitudes according to their requirements.Finally,a CNC lathe and a spindle system are used as an example to verify the new allocation method.Seven criteria are considered to compare the results of the new method with traditional methods.The allocation results indicate that the new method is more flexible than traditional methods.By employing the new cubic transformed function,the method covers a wider range of problems in CNC reliability allocation without losing the advantages of traditional methods.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(Nos.51904335,11972378,41630642)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2019zzts310).
文摘To investigate the influence of the bedding angle,β,on the mechanical properties and rockburst proneness,uniaxial compression tests were conducted using cylindrical phyllite specimens with different bedding angles.According to the results,the peak stress,peak strain,cumulative acoustic emission counts,and potential energy of the elastic strain exhibited a U-shaped change trend.With an increase in β from 0°to 90°,the failure mode transformed from tensile splitting failure along the bedding plane to shear slip failure along the weak bedding plane.Finally,the failure mode evolved into a tensile splitting failure across the bedding plane.When β=15°,30°,and 45°,the phyllite specimens exhibited strong,slight,and moderate rockburst proneness,with strong,slight,and moderate shear slip rockbursts,respectively.When β=0°,60°,75°,and 90°,the phyllite specimens had extremely strong rockburst proneness,and an extremely strong strain rockburst occurred.