Experimental investigation of hypersonic boundary layer instability on a cone is performed at Mach number 6 in a hypersonic wind tunnel. Time series signals of instantaneous fluctuating surface-thermal-flux are measur...Experimental investigation of hypersonic boundary layer instability on a cone is performed at Mach number 6 in a hypersonic wind tunnel. Time series signals of instantaneous fluctuating surface-thermal-flux are measured by Pt-thin-film thermocouple temperature sensors mounted at 28 stations on the cone surface in the streamwise direction to investigate the development of the unstable disturbance. Wavelet transform is employed as a mathematical tool to obtain the multi-scale characteristics of fluctuating surfacethermal-flux both in the temporal and spectrum space. The conditional sampling algorithm using wavelet coefficient as an index is put forward to extract the unstable disturbance waveform from the fluctuating surface-thermal-flux signals.The generic waveform for the second mode unstable disturbance is obtained by a phase-averaging technique. The development of the unstable disturbance in the streamwise direction is assessed both in the temporal and spectrum space. Our study shows that the local unstable disturbance detection method based on wavelet transformation offers an alternative powerful tool in studying the hypersonic unstable mode of laminar-turbulent transition. It is demonstrated that, at hypersonic speeds, the dominant flow instability is the second mode, which governs the course of laminar-turbulent transition of sharp cone boundary layer.展开更多
Atomically thin two-dimensional(2D) materials are the building bricks for next-generation electronics and optoelectronics, which demand plentiful functional properties in mechanics, transport, magnetism and photorespo...Atomically thin two-dimensional(2D) materials are the building bricks for next-generation electronics and optoelectronics, which demand plentiful functional properties in mechanics, transport, magnetism and photoresponse.For electronic devices, not only metals and high-performance semiconductors but also insulators and dielectric materials are highly desirable. Layered structures composed of 2D materials of different properties can be delicately designed as various useful heterojunction or homojunction devices, in which the designs on the same material(namely homojunction) are of special interest because preparation techniques can be greatly simplified and atomically seamless interfaces can be achieved. We demonstrate that the insulating pristine ZnPS_3, a ternary transition-metal phosphorus trichalcogenide, can be transformed into a highly conductive metal and an n-type semiconductor by intercalating Co and Cu atoms, respectively. The field-effect-transistor(FET) devices are prepared via an ultraviolet exposure lithography technique. The Co-ZnPS_3 device exhibits an electrical conductivity of 8 × 10^(4) S/m, which is comparable to the conductivity of graphene. The Cu-ZnPS_3 FET reveals a current ON/OFF ratio of 1-05 and a mobility of 3 × 10^(-2 )cm^(2)·V^(-1)·s^(-1). The realization of an insulator, a typical semiconductor and a metallic state in the same 2D material provides an opportunity to fabricate n-metal homojunctions and other in-plane electronic functional devices.展开更多
In this paper, a new method of combination single layer wavelet transform and compressive sensing is proposed for image fusion. In which only measured the high-pass wavelet coefficients of the image but preserved the ...In this paper, a new method of combination single layer wavelet transform and compressive sensing is proposed for image fusion. In which only measured the high-pass wavelet coefficients of the image but preserved the low-pass wavelet coefficient. Then, fuse the low-pass wavelet coefficients and the measurements of high-pass wavelet coefficient with different schemes. For the reconstruction, by using the minimization of total variation algorithm (TV), high-pass wavelet coefficients could be recovered by the fused measurements. Finally, the fused image could be reconstructed by the inverse wavelet transform. The experiments show the proposed method provides promising fusion performance with a low computational complexity.展开更多
A penny-shaped interfacial crack between dissimilar magnetoelectroelastic layers subjected to magnetoelectromechanical loads is investigated,where the magnetoelectrically impermeable crack surface condition is adopted...A penny-shaped interfacial crack between dissimilar magnetoelectroelastic layers subjected to magnetoelectromechanical loads is investigated,where the magnetoelectrically impermeable crack surface condition is adopted. By using Hankel transform technique,the mixed boundary value problem is firstly reduced to a system of singular integral equations,which are further reduced to a system of algebraic equations. The field intensity factors and energy release rate are finally derived. Numerical results elucidate the eects of crack configuration,electric and/or magnetic loads,and material parameters of the magnetoelectroelastic layers on crack propagation and growth. This work should be useful for the design of magnetoelectroelastic composite structures.展开更多
Thermal barrier coatings(TBCs) protection is widely used to prolong the lifetime of turbine components.The outermost layer of TBCs is ceramic layer, whose function is heat insulation, and the main composition of the...Thermal barrier coatings(TBCs) protection is widely used to prolong the lifetime of turbine components.The outermost layer of TBCs is ceramic layer, whose function is heat insulation, and the main composition of the ceramic layer is ZrO2. In this study, the micro-Zr02 and the nano-ZrO2 doped with 10 wt% CeO2 as well as microZrO2 and nano-ZrO2 were prepared by air plasma spraying(APS) to study the advantages of the addition of rare earth element. The effect of CeO2 on the phase transformation of ZrO2 was studied. The results show that there are few cracks in micro-and nano-ZrO2 doped with 10 wt% CeO2,and rare earth oxides can affect the phase transformation significantly. The morphologies, hardness and elastic modulus of the four ceramic layers were also discussed.展开更多
基金supported by the National Natural Science Foundation of China (10832001,10872145)Opening subject of State Key Laboratory of Nonlinear Mechanics,Institute of Mechanics,Chinese Academy of Sciences
文摘Experimental investigation of hypersonic boundary layer instability on a cone is performed at Mach number 6 in a hypersonic wind tunnel. Time series signals of instantaneous fluctuating surface-thermal-flux are measured by Pt-thin-film thermocouple temperature sensors mounted at 28 stations on the cone surface in the streamwise direction to investigate the development of the unstable disturbance. Wavelet transform is employed as a mathematical tool to obtain the multi-scale characteristics of fluctuating surfacethermal-flux both in the temporal and spectrum space. The conditional sampling algorithm using wavelet coefficient as an index is put forward to extract the unstable disturbance waveform from the fluctuating surface-thermal-flux signals.The generic waveform for the second mode unstable disturbance is obtained by a phase-averaging technique. The development of the unstable disturbance in the streamwise direction is assessed both in the temporal and spectrum space. Our study shows that the local unstable disturbance detection method based on wavelet transformation offers an alternative powerful tool in studying the hypersonic unstable mode of laminar-turbulent transition. It is demonstrated that, at hypersonic speeds, the dominant flow instability is the second mode, which governs the course of laminar-turbulent transition of sharp cone boundary layer.
基金Supported by the National Key Research and Development Program of China (Grant Nos.2017YFA0403600 and 2016YFA0300404)the National Natural Science Foundation of China (Grant Nos.11874363,11974356 and U1932216)the Collaborative Innovation Program of Hefei Science Center,CAS (Grant No.2019HSC-CIP002)。
文摘Atomically thin two-dimensional(2D) materials are the building bricks for next-generation electronics and optoelectronics, which demand plentiful functional properties in mechanics, transport, magnetism and photoresponse.For electronic devices, not only metals and high-performance semiconductors but also insulators and dielectric materials are highly desirable. Layered structures composed of 2D materials of different properties can be delicately designed as various useful heterojunction or homojunction devices, in which the designs on the same material(namely homojunction) are of special interest because preparation techniques can be greatly simplified and atomically seamless interfaces can be achieved. We demonstrate that the insulating pristine ZnPS_3, a ternary transition-metal phosphorus trichalcogenide, can be transformed into a highly conductive metal and an n-type semiconductor by intercalating Co and Cu atoms, respectively. The field-effect-transistor(FET) devices are prepared via an ultraviolet exposure lithography technique. The Co-ZnPS_3 device exhibits an electrical conductivity of 8 × 10^(4) S/m, which is comparable to the conductivity of graphene. The Cu-ZnPS_3 FET reveals a current ON/OFF ratio of 1-05 and a mobility of 3 × 10^(-2 )cm^(2)·V^(-1)·s^(-1). The realization of an insulator, a typical semiconductor and a metallic state in the same 2D material provides an opportunity to fabricate n-metal homojunctions and other in-plane electronic functional devices.
文摘In this paper, a new method of combination single layer wavelet transform and compressive sensing is proposed for image fusion. In which only measured the high-pass wavelet coefficients of the image but preserved the low-pass wavelet coefficient. Then, fuse the low-pass wavelet coefficients and the measurements of high-pass wavelet coefficient with different schemes. For the reconstruction, by using the minimization of total variation algorithm (TV), high-pass wavelet coefficients could be recovered by the fused measurements. Finally, the fused image could be reconstructed by the inverse wavelet transform. The experiments show the proposed method provides promising fusion performance with a low computational complexity.
基金supported by the National Natural Science Foundation of China (10772123)the Natural Science Fund for Outstanding Younger of Hebei Province of China (A2009001624)
文摘A penny-shaped interfacial crack between dissimilar magnetoelectroelastic layers subjected to magnetoelectromechanical loads is investigated,where the magnetoelectrically impermeable crack surface condition is adopted. By using Hankel transform technique,the mixed boundary value problem is firstly reduced to a system of singular integral equations,which are further reduced to a system of algebraic equations. The field intensity factors and energy release rate are finally derived. Numerical results elucidate the eects of crack configuration,electric and/or magnetic loads,and material parameters of the magnetoelectroelastic layers on crack propagation and growth. This work should be useful for the design of magnetoelectroelastic composite structures.
基金financially supported by the National Natural Science Foundation of China(No.51371173)the Natural Science Foundation of Liaoning Province(No.2013024011)the Doctor Start-Up Fund of Liaoning Province(No.20121063)
文摘Thermal barrier coatings(TBCs) protection is widely used to prolong the lifetime of turbine components.The outermost layer of TBCs is ceramic layer, whose function is heat insulation, and the main composition of the ceramic layer is ZrO2. In this study, the micro-Zr02 and the nano-ZrO2 doped with 10 wt% CeO2 as well as microZrO2 and nano-ZrO2 were prepared by air plasma spraying(APS) to study the advantages of the addition of rare earth element. The effect of CeO2 on the phase transformation of ZrO2 was studied. The results show that there are few cracks in micro-and nano-ZrO2 doped with 10 wt% CeO2,and rare earth oxides can affect the phase transformation significantly. The morphologies, hardness and elastic modulus of the four ceramic layers were also discussed.