In elucidating the laws of matter motion, it is necessary also to take into account the subjective human possibilities to think and construct models. These possibilities are restricted to the framework of Euclidean sp...In elucidating the laws of matter motion, it is necessary also to take into account the subjective human possibilities to think and construct models. These possibilities are restricted to the framework of Euclidean space. No problems could arise during the development of the laws of classical science. However, it was established later on that in some areas it was rather difficult to describe the motion of the matter in terms of Euclidean models. In these cases, researchers either introduce a space of higher dimensionality, use complex numbers, or make some deformations of our habitual Euclidean space. Those were exactly the cases for which the pseudo-Euclidean, Hilbertian, reciprocal, micro-Euclidean and other spaces were proposed. Humans are able to think only in terms of Euclidean space. So, to provide a correct description of unusual motion of matter, the necessity arises to transform the information into the understandable Euclidean space. The operators suitable for these purposes are Lorentz transformations, Schrodinger equation, the integral transformations of Fourier and Weierstrass, etc. The features of information transformations between different spaces are illustrated with the examples from the areas of X-ray structural analysis and quantum physics.展开更多
文摘In elucidating the laws of matter motion, it is necessary also to take into account the subjective human possibilities to think and construct models. These possibilities are restricted to the framework of Euclidean space. No problems could arise during the development of the laws of classical science. However, it was established later on that in some areas it was rather difficult to describe the motion of the matter in terms of Euclidean models. In these cases, researchers either introduce a space of higher dimensionality, use complex numbers, or make some deformations of our habitual Euclidean space. Those were exactly the cases for which the pseudo-Euclidean, Hilbertian, reciprocal, micro-Euclidean and other spaces were proposed. Humans are able to think only in terms of Euclidean space. So, to provide a correct description of unusual motion of matter, the necessity arises to transform the information into the understandable Euclidean space. The operators suitable for these purposes are Lorentz transformations, Schrodinger equation, the integral transformations of Fourier and Weierstrass, etc. The features of information transformations between different spaces are illustrated with the examples from the areas of X-ray structural analysis and quantum physics.