期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of Plastic Deformation and Stresses on Dilatation duringthe Martensitic Transformation in a B-bearing Steel 被引量:2
1
作者 M. C.Somani and L.P.Karjalainen Dept. of Mechanical Engineering, University of Oulu, Oulu, Finland M. Oldenburg and M.Eriksson Dept. of Mechanical Engineering, Lulea University of Technology, Lulea, Sweden 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第2期203-206,共4页
To provide data for improved modelling of the behaviour of steel components in a simultaneous forming and quenching process, the effects of plastic deformation and stresses on dilatation during the martensitic transfo... To provide data for improved modelling of the behaviour of steel components in a simultaneous forming and quenching process, the effects of plastic deformation and stresses on dilatation during the martensitic transformation in a B-bearing steel were investigated. It was found that plastic deformation of austenite at high temperatures enhances ferrite formation significantly, and consequently, the dilatation decreases markedly even at a cooling rate of 280'C/s. The created ferritic-martensitic microstructure possesses clearly lower hardness and strength than the martensitic structure. Elastic stresses cause the preferred orientation in martensite to be formed so that diametric dilatation can increase by nearly 200% under axial compression. 展开更多
关键词 Effects of plastic Deformation and stresses on Dilatation duringthe Martensitic transformation in a B-bearing Steel
下载PDF
Effect of Crystallographic Orientation on Quenching Stress during Martensitic Phase Transformation of Carbon Steel Plate 被引量:1
2
作者 潘龙 何闻 GU Bangping 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1213-1219,共7页
During quenching, the residual stresses are affected by the crystallographic orientation of martensite, because the nonuniform thermal stresses affect the crystallographic orientation of the lathshaped martensite and ... During quenching, the residual stresses are affected by the crystallographic orientation of martensite, because the nonuniform thermal stresses affect the crystallographic orientation of the lathshaped martensite and induce the anisotropic expansion. To simulate this process, the model of anisotropic transformation induced plasticity(TRIP) was built using the WLR-BM phenomenological theory. The equivalent expansion coefficient was introduced considering the thermal and plastic strains, which simplified the numerical simulation. Furthermore, the quenching residual stresses in carbon steel plates were calculated using the finite element method under ANSYS Workbench simulation environment. To evaluate the simulative results, distributions of residual stresses from the surface to the interior at the center of specimen were measured using the layer-by-layer hole-drilling method. Compared to the measured results, the simulative results considering the anisotropic expansion induced by the crystallographic orientation of martenstic laths were found to be more accurate than those without considering it. 展开更多
关键词 residual stresses martenstic transformation crystallographic orientation transformation induced plasticity expansion coefficient
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部