We propose a new scheme for transformer differential protection. This scheme uses different characteristics of the differential currents waveforms (DCWs) under internal fault and magnetizing inrush current conditions....We propose a new scheme for transformer differential protection. This scheme uses different characteristics of the differential currents waveforms (DCWs) under internal fault and magnetizing inrush current conditions. The scheme is based on choosing an appropriate feature of the waveform and monitoring it during the post-disturbance instants. For this purpose, the signal feature is quantified by a discrimination function (DF). Discrimination between internal faults and magnetizing inrush currents is carried out by tracking the signs of three decision-making functions (DMFs) computed from the DFs for three phases. We also present a new algorithm related to the general scheme. The algorithm is based on monitoring the second derivative sign of DCW. The results show that all types of internal faults, even those accompanied by the magnetizing inrush, can be correctly identified from the inrush conditions about half a cycle after the occurrence of a disturbance. Another advantage of the proposed method is that the fault detection algorithm does not depend on the selection of thresholds. Furthermore, the proposed algorithm does not require burdensome computations.展开更多
文摘We propose a new scheme for transformer differential protection. This scheme uses different characteristics of the differential currents waveforms (DCWs) under internal fault and magnetizing inrush current conditions. The scheme is based on choosing an appropriate feature of the waveform and monitoring it during the post-disturbance instants. For this purpose, the signal feature is quantified by a discrimination function (DF). Discrimination between internal faults and magnetizing inrush currents is carried out by tracking the signs of three decision-making functions (DMFs) computed from the DFs for three phases. We also present a new algorithm related to the general scheme. The algorithm is based on monitoring the second derivative sign of DCW. The results show that all types of internal faults, even those accompanied by the magnetizing inrush, can be correctly identified from the inrush conditions about half a cycle after the occurrence of a disturbance. Another advantage of the proposed method is that the fault detection algorithm does not depend on the selection of thresholds. Furthermore, the proposed algorithm does not require burdensome computations.