A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long peri...A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate.展开更多
A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth.Results reveal a retarded transformation from the shock-induced Bi-Ⅴphase to a metastable Bi-...A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth.Results reveal a retarded transformation from the shock-induced Bi-Ⅴphase to a metastable Bi-Ⅳphase during the shock release,instead of the thermodynamically stable Bi-Ⅲphase.The emergence of the metastable Bi-Ⅳphase is understood by the competitive interplay between two transformation pathways towards the Bi-Ⅳand Bi-Ⅲ,respectively.The former is more rapid than the latter because the Bi-Ⅴto B-Ⅳtransformation is driven by interaction between the closest atoms while the Bi-Ⅴto B-Ⅲtransformation requires interaction between the second-closest atoms.The nucleation time for the Bi-Ⅴto Bi-Ⅳtransformation is determined to be 5.1±0.9 ns according to a classical nucleation model.This observation demonstrates the importance of the formation of the transient metastable phases,which can change the phase transformation pathway in a dynamic process.展开更多
Pyrolusite comprises the foremost manganese oxides and is a major source of manganese production.An innovative hydrogenbased mineral phase transformation technology to pyrolusite was proposed,where a 96.44%distributio...Pyrolusite comprises the foremost manganese oxides and is a major source of manganese production.An innovative hydrogenbased mineral phase transformation technology to pyrolusite was proposed,where a 96.44%distribution rate of divalent manganese(Mn^(2+))was observed at an optimal roasting temperature of 650℃,a roasting time of 25 min,and an H2 concentration of 20vol%;under these conditions.The manganese predominantly existed in the form of manganosite.This study investigated the generation mechanism of manganosite based on the reduction kinetics,phase transformation,and structural evolution of pyrolusite and revealed that high temperature improved the distribution rate,and the optimal kinetic model for the reaction was the random nucleation and growth model(reaction order,n=3/2)with an activation energy(E_(a))of 24.119 kJ·mol^(−1).Throughout the mineral phase transformation,manganese oxide from the outer layer of particles moves inward to the core.In addition,pyrolusite follows the reduction sequence of MnO_(2)→Mn_(2)O_(3)→Mn_(3)O_(4)→MnO,and the reduction of manganese oxides in each valence state simultaneously proceeds.These findings provide significant insight into the efficient and clean utilization of pyrolusite.展开更多
The mechanism involved in the phase transformation process of pyrolusite (MnO_(2)) during roasting in a reducing atmosphere was systematically elucidated in this study,with the aim of effectively using low-grade compl...The mechanism involved in the phase transformation process of pyrolusite (MnO_(2)) during roasting in a reducing atmosphere was systematically elucidated in this study,with the aim of effectively using low-grade complex manganese ore resources.According to single-factor experiment results,the roasted product with a divalent manganese (Mn^(2+)) distribution rate of 95.30% was obtained at a roasting time of 25 min,a roasting temperature of 700℃,a CO concentration of 20at%,and a total gas volume of 500 mL·min^(-1),in which the manganese was mainly in the form of manganosite (MnO).Scanning electron microscopy and Brunauer–Emmett–Teller theory demonstrated the microstructural evolution of the roasted product and the gradual reduction in the pyrolusite ore from the surface to the core Thermodynamic calculations,X-ray photoelectron spectroscopy,and X-ray diffractometry analyses determined that the phase transformation of pyrolusite followed the order of MnO_(2)→Mn_(2)O_(3)→Mn_(3)O_(4)→MnO phase by phase,and the reduction of manganese oxides in each valence state proceeded simultaneously.展开更多
The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from struc...The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from structural degradation during the long-term cycling process,leading to capacity fading.In this study,a Co-doped dMO composite with reduced graphene oxide(GC-dMO)is developed using a simple cost-effective hydrothermal method.The degree of disorderness increases owing to the hetero-atom doping and graphene oxide composites.It is demonstrated that layered dMO and GC-dMO undergo a structural transition from K-birnessite to the Zn-buserite phase upon the first discharge,which enhances the intercalation of Zn^(2+)ions,H_(2)O molecules in the layered structure.The GC-dMO cathode exhibits an excellent capacity of 302 mAh g^(-1)at a current density of 100 mAg^(-1)after 100 cycles as compared with the dMO cathode(159 mAhg^(-1)).The excellent electrochemical performance of the GC-dMO cathode owing to Co-doping and graphene oxide sheets enhances the interlayer gap and disorderness,and maintains structural stability,which facilitates the easy reverse intercalation and de-intercalation of Zn^(2+)ions and H_(2)O molecules.Therefore,GC-dMO is a promising cathode material for large-scale aqueous ZIBs.展开更多
In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heighte...In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heightened concerns regarding insulation failures. Meanwhile, the underlying mechanism behind discharge breakdown failure and nanofiller enhancement under high-frequency electrical stress remains unclear. An electric-thermal coupled discharge breakdown phase field model was constructed to study the evolution of the breakdown path in polyimide nanocomposite insulation subjected to high-frequency stress. The investigation focused on analyzing the effect of various factors, including frequency, temperature, and nanofiller shape, on the breakdown path of Polyimide(PI) composites. Additionally, it elucidated the enhancement mechanism of nano-modified composite insulation at the mesoscopic scale. The results indicated that with increasing frequency and temperature, the discharge breakdown path demonstrates accelerated development, accompanied by a gradual dominance of Joule heat energy. This enhancement is attributed to the dispersed electric field distribution and the hindering effect of the nanosheets. The research findings offer a theoretical foundation and methodological framework to inform the optimal design and performance management of new insulating materials utilized in high-frequency power equipment.展开更多
The orthorhombic CuNb_(2)O_(6)(O-CNO)is established as a competitive anode for lithium-ion capacitors(LICs)owing to its attractive compositional/structural merits.However,the high-temperature synthesis(>900℃)and c...The orthorhombic CuNb_(2)O_(6)(O-CNO)is established as a competitive anode for lithium-ion capacitors(LICs)owing to its attractive compositional/structural merits.However,the high-temperature synthesis(>900℃)and controversial charge-storage mechanism always limit its applications.Herein,we develop a low-temperature strategy to fabricate a nano-blocks-constructed hierarchical accordional O-CNO framework by employing multilayered Nb_(2)CT_(x)as the niobium source.The intrinsic stress-induced formation/transformation mechanism of the monoclinic CuNb_(2)O_(6)to O-CNO is tentatively put forward.Furthermore,the integrated phase conversion and solid solution lithium-storage mechanism is reasonably unveiled with comprehensive in(ex)situ characterizations.Thanks to its unique structural merits and lithium-storage process,the resulted O-CNO anode is endowed with a large capacity of 150.3 mAh g^(-1)at 2.0 A g^(-1),along with long-duration cycling behaviors.Furthermore,the constructed O-CNO-based LICs exhibit a high energy(138.9 Wh kg^(-1))and power(4.0 kW kg^(-1))densities with a modest cycling stability(15.8%capacity degradation after 3000 consecutive cycles).More meaningfully,the in-depth insights into the formation and charge-storage process here can promote the extensive development of binary metal Nb-based oxides for advanced LICs.展开更多
Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evol...Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evolution of Sn anode during lithiation and delithiation,synchrotron X-ray energydispersive diffraction and X-ray tomography are simultaneously employed during Li/Sn cell operation.The intermediate Li-Sn alloy phases during de/lithiation are identified,and their dynamic phase transformation is unraveled which is further correlated with the volume variation of the Sn at particle-and electrode-level.Moreover,we find that the Sn particle expansion/shrinkage induced particle displacement is anisotropic:the displacement perpendicular to the electrode surface(z-axis)is more pronounced compared to the directions(x-and y-axis)along the electrode surface.This anisotropic particle displacement leads to an anisotropic volume variation at the electrode level and eventually generates a net electrode expansion towards the separator after cycling,which could be one of the root causes of mechanical detachment and delamination of electrodes during long-term operation.The unraveled chemical evolution of Li-Sn and deep insights into the microstructural evolution of Sn anode provided here could guide future design and engineering of Sn and other alloy anodes for high energy density Li-and Na-ion batteries.展开更多
To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)stru...To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)structures in the Mg-Gd-Y-Zn-Zr alloy annealed at 300℃~500℃.Various types of metastable LPSO building block clusters were found to exist in alloy structures at different temperatures,which precipitate during the solidification and homogenization process.The stability of Zn/Y clusters is explained by the first principles of density functional theory.The LPSO structure is distinguished by the arrangement of its different Zn/Y enriched LPSO structural units,which comprises local fcc stacking sequences upon a tightly packed plane.The presence of solute atoms causes local lattice distortion,thereby enabling the rearrangement of Mg atoms in the different configurations in the local lattice,and local HCP-FCC transitions occur between Mg and Zn atoms occupying the nearest neighbor positions.This finding indicates that LPSO structures can generate necessary Schockley partial dislocations on specific slip surfaces,providing direct evidence of the transition from 18R to 14H.Growth of the LPSO,devoid of any defects and non-coherent interfaces,was observed separately from other precipitated phases.As a result,the precipitation sequence of LPSO in the solidification stage was as follows:Zn/Ycluster+Mg layers→various metastable LPSO building block clusters→18R/24R LPSO;whereas the precipitation sequence of LPSO during homogenization treatment was observed to be as follows:18R LPSO→various metastable LPSO building block clusters→14H LPSO.Of these,14H LPSO was found to be the most thermodynamically stable structure.展开更多
An accurate flow stress model was established by considering the parameters of strain rate,strain and temperature as well asβ→a+βphase transformation in order to develop the plastic forming theory of TC18 titanium ...An accurate flow stress model was established by considering the parameters of strain rate,strain and temperature as well asβ→a+βphase transformation in order to develop the plastic forming theory of TC18 titanium alloy.Firstly,the phase transition kinetics of TC18 titanium alloy during isothermal and continuous cooling at 1073 and 1273 K was studied by thermodynamic calculation,meanwhile,the relationship of volume fraction of phase transition with temperature and time was obtained.Constitutive models were calculated by investigating flow behaviors under hot compression tests with the strain rates of 0.001-1s^(-1) and temperatures of 973-1223 K in the singleβand a+βregions in TC18 titanium alloy,respectively.By combining the phase transformation dynamic kinetics with constitutive models,an accurate flow stress model was established,providing theoretical basis and data support for the hot forging of TC18 titanium alloy.展开更多
In this paper, TitaiJum dioxide (TiO2) rutile single crystal was irradiated by infrared femtosecond laser pulses with repetition rate of 250 kHz. For a P-polarized femtosecond laser, the periodic nanograting structu...In this paper, TitaiJum dioxide (TiO2) rutile single crystal was irradiated by infrared femtosecond laser pulses with repetition rate of 250 kHz. For a P-polarized femtosecond laser, the periodic nanograting structure on the ablation crater surface was formed . The periodicity is much less than the laser wavelength. The direction of nanograting alignment depends on the polarization laser beam. Micro-Raman spectra show that the intensity of Eg Raman vibrating mode of rutile phase increases and that of Alg Raman vibrating mode decreases apparently within the ablation crater. With the increase of irradiation time and laser average power, the Raman vibrating modes of anatase phase emerged. Rutile phase of TiO2 single crystal is partly transformed into anatase phase.展开更多
This paper puts forward wavelet transform method to identify P and S phases in three component seismograms using polarization information contained in the wavelet transform coefficients of signal. The P and S wave loc...This paper puts forward wavelet transform method to identify P and S phases in three component seismograms using polarization information contained in the wavelet transform coefficients of signal. The P and S wave locator functions are constructed by using eigenvalue analysis method to wavelet transform coefficient across several scales. Locator functions formed by wavelet transform have stated noise resistance capability, and is proved to be very effective in identifying the P and S arrivals of the test data and actual earthquake data.展开更多
Existing experimental results have shown that four types of physical mechanisms, namely, martensite transformation, martensite reorientation, magnetic domain wall motion and magnetization vector rotation, can be activ...Existing experimental results have shown that four types of physical mechanisms, namely, martensite transformation, martensite reorientation, magnetic domain wall motion and magnetization vector rotation, can be activated during the magneto-mechanical deformation of NiMnGa ferromagnetic shape memory alloy (FSMA) single crystals. In this work, based on irreversible thermodynamics, a three-dimensional (3D) single crystal constitutive model is constructed by considering the aforementioned four mechanisms simultaneously. Three types of internal variables, i.e., the volume fraction of each martensite variant, the volume fraction of magnetic domain in each variant and the deviation angle between the magnetization vector, and easy axis are introduced to characterize the magneto-mechanical state of the single crystals. The thermodynamic driving force of each mechanism and the thermodynamic constraints on the constitutive model are obtained from Clausius's dissipative inequality and constructed Gibbs free energy. Then, thermodynamically consistent kinetic equations for the four mechanisms are proposed, respectively. Finally, the ability of the proposed model to describe the magneto-mechanical deformation of NiMnGa FSMA single crystals is verified by comparing the predictions with corresponding experimental results. It is shown that the proposed model can quantitatively capture the main experimental phenomena. Further, the proposed model is used to predict the deformations of the single crystals under the non-proportional mechanical loading conditions.展开更多
Phase transformation is one of the factors that would significantly influence the ability to resist cavitation erosion of stainless steels. Due to the specific properties of duplex stainless steel, the heat treatment ...Phase transformation is one of the factors that would significantly influence the ability to resist cavitation erosion of stainless steels. Due to the specific properties of duplex stainless steel, the heat treatment would bring about significant phase transformations. In this paper, we have examined the previous studies on the phase transition of stainless steel, including the literature on the classification of stainless steel, spinodal decomposition, sigma phase transformation, and cavitation erosion of double stainless steel. Through these literature investigations, the destruction of cavitation erosion on duplex stainless steel can be clearly known, and the causes of failure of duplex stainless steel in seawater can be clarified, thus providing a theoretical basis for subsequent scientific research. And the review is about to help assess the possibility of using bulk heat treatment to improve the cavitation erosion (CE) behaviour of the duplex stainless steel 7MoPLUS.展开更多
The effects of dynamic electropulsing on microstructure changes and phase transformations of a rolled Mg-9Al-1Zn alloy were studied by using optical microscopy, X-ray diffraction, back-scattered scanning microscopy an...The effects of dynamic electropulsing on microstructure changes and phase transformations of a rolled Mg-9Al-1Zn alloy were studied by using optical microscopy, X-ray diffraction, back-scattered scanning microscopy and transmission electron microscopy techniques. The decomposition of β phase was accelerated under dynamic electropulsing, compared with the conventional thermal processes. Dynamic electropulsing was less effective in affecting the phase transformations, but more effective in reducing residual stress than the static electropulsing. Dynamic electropulsing improved machinability of single point diamond turning, the mechanism of which is discussed from the point of view of dislocation dynamics.展开更多
Practically,the load currents in three phases are asymmetric in the power system.It means that the impedances are different in all three phases.If the consumer’s transformer neutral cut off and/or was disconnected fr...Practically,the load currents in three phases are asymmetric in the power system.It means that the impedances are different in all three phases.If the consumer’s transformer neutral cut off and/or was disconnected from the neutral of power supply source,then there will be some trouble and failure occurred.The current in the neutral wire drops down to zero when the neutral wire is cut off and the phase currents of all three-phase equal to each other since there was no return wire.The currents are equal but the voltages at the phase consumers are different.Especially for residential single-phase consumers,the voltage at the consumers of the phase varies differently for three phase systems when the neutral wire was disconnected at consumer side and even the voltage at the consumers one or two of those three phases becomes over nominal voltage or reaches nearly line voltage.In this case,the electronic appliances in that phase will be fed by high voltage than the rated value and they can be broken down.In the power system of UB(Ulaanbaatar)city,there are some occasional such kind of failures every year.Obviously,many electronic appliances were broken down due to high voltage and the electricity utility companies respond for service charge of damaged parts.展开更多
Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step s...Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step solid solution treatments on microstructure andδphase precipitation of Inconel 718 alloy were studied,and the transformation mechanism fromγ″metastable phase toδphase was clarified.The precipitates were statistically analyzed by X-ray diffractometry.The results show that theδphase content firstly increased,and then decreased with the temperature of the second-step solid solution.The changes in microstructure andδphase were studied by scanning electron microscopy and transmission electron microscopy.An intragranularδphase formed in Inconel 718 alloy at the second-[100]_(δ)[011]γ step solid solution temperature of 925℃,and its orientation relationship withγmatrix was determined as//and(010)_(δ)//(111)γ.Furthermore,the Vickers hardness of different heat treatment samples was measured,and the sample treated by second-step solid solution at 1010℃ reached the maximum hardness of HV 446.84.展开更多
Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employ...Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employing sparse Fourier transform(SFT)and the relevant hardware architecture for field programmable gate array(FPGA)and application-specific integrated circuit(ASIC)implementation.Efforts are made at both the algorithmic level and the implementation level to enable merged searching of code phase and Doppler frequency without incurring massive hardware expenditure.Compared with the existing code acquisition approaches,it is shown from theoretical analysis and experimental results that the proposed design can shorten processing latency and reduce hardware complexity without degrading the acquisition probability.展开更多
基金supported by the National Key Research and Development Program of China(2021YFB3501002)State Key Program of National Natural Science Foundation of China(5203405)+3 种基金National Natural Science Foundation of China(51974220,52104383)National Key Research and Development Program of China(2021YFB3700902)Key Research and Development Program of Shaanxi Province(2020ZDLGY13-06,2017ZDXM-GY-037)Shaanxi Province National Science Fund for Distinguished Young Scholars(2022JC-24)。
文摘A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate.
基金supported by the National Natural Science Foundation of China (Grant No.12072331)the Science Challenge Project (Grant No.TZ2018001)+2 种基金the Japan Society for the Promotion of Science (Grant Nos.17H04820 and 21H01677)the Foundation of the United Laboratory of High-Pressure Physics and Earthquake Scienceperformed under the approval of the Photon Factory Program Advisory Committee (Proposal Nos.2016S2-006 and 2020G680)。
文摘A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth.Results reveal a retarded transformation from the shock-induced Bi-Ⅴphase to a metastable Bi-Ⅳphase during the shock release,instead of the thermodynamically stable Bi-Ⅲphase.The emergence of the metastable Bi-Ⅳphase is understood by the competitive interplay between two transformation pathways towards the Bi-Ⅳand Bi-Ⅲ,respectively.The former is more rapid than the latter because the Bi-Ⅴto B-Ⅳtransformation is driven by interaction between the closest atoms while the Bi-Ⅴto B-Ⅲtransformation requires interaction between the second-closest atoms.The nucleation time for the Bi-Ⅴto Bi-Ⅳtransformation is determined to be 5.1±0.9 ns according to a classical nucleation model.This observation demonstrates the importance of the formation of the transient metastable phases,which can change the phase transformation pathway in a dynamic process.
基金supported by the National Key Research and Development Program of China(No.2023YFC 2909000)the National Natural Science Foundation of China(No.52174240)+4 种基金the Major Science and Technology Projects of Xinjiang Uygur Autonomous Region(No.2023A03003-2)the XingLiao Talent Program of Liaoning Province(No.XLYC2203167)the Excellent Youth Fund Project of Liaoning Natural Science Foundation(No.2023JH3/10200010)the Fundamental Research Funds for the Central Universities(No.N23011026)the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2023-15).
文摘Pyrolusite comprises the foremost manganese oxides and is a major source of manganese production.An innovative hydrogenbased mineral phase transformation technology to pyrolusite was proposed,where a 96.44%distribution rate of divalent manganese(Mn^(2+))was observed at an optimal roasting temperature of 650℃,a roasting time of 25 min,and an H2 concentration of 20vol%;under these conditions.The manganese predominantly existed in the form of manganosite.This study investigated the generation mechanism of manganosite based on the reduction kinetics,phase transformation,and structural evolution of pyrolusite and revealed that high temperature improved the distribution rate,and the optimal kinetic model for the reaction was the random nucleation and growth model(reaction order,n=3/2)with an activation energy(E_(a))of 24.119 kJ·mol^(−1).Throughout the mineral phase transformation,manganese oxide from the outer layer of particles moves inward to the core.In addition,pyrolusite follows the reduction sequence of MnO_(2)→Mn_(2)O_(3)→Mn_(3)O_(4)→MnO,and the reduction of manganese oxides in each valence state simultaneously proceeds.These findings provide significant insight into the efficient and clean utilization of pyrolusite.
基金financially supported by the National Key Research and Development Program of China (No.2023YFC2909000)the National Natural Science Foundation of China(No.52174240)the Open Foundation of State Key Laboratory of Mineral Processing (No.BGRIMM-KJSKL-2023-15)。
文摘The mechanism involved in the phase transformation process of pyrolusite (MnO_(2)) during roasting in a reducing atmosphere was systematically elucidated in this study,with the aim of effectively using low-grade complex manganese ore resources.According to single-factor experiment results,the roasted product with a divalent manganese (Mn^(2+)) distribution rate of 95.30% was obtained at a roasting time of 25 min,a roasting temperature of 700℃,a CO concentration of 20at%,and a total gas volume of 500 mL·min^(-1),in which the manganese was mainly in the form of manganosite (MnO).Scanning electron microscopy and Brunauer–Emmett–Teller theory demonstrated the microstructural evolution of the roasted product and the gradual reduction in the pyrolusite ore from the surface to the core Thermodynamic calculations,X-ray photoelectron spectroscopy,and X-ray diffractometry analyses determined that the phase transformation of pyrolusite followed the order of MnO_(2)→Mn_(2)O_(3)→Mn_(3)O_(4)→MnO phase by phase,and the reduction of manganese oxides in each valence state proceeded simultaneously.
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Korean Government(NRF-2021R1A4A1030318,NRF-2022R1C1C1011386,NRF-2020M3H4A1A03084258)supported by the"Regional Innovation Strategy(RIS)"through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-003)
文摘The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from structural degradation during the long-term cycling process,leading to capacity fading.In this study,a Co-doped dMO composite with reduced graphene oxide(GC-dMO)is developed using a simple cost-effective hydrothermal method.The degree of disorderness increases owing to the hetero-atom doping and graphene oxide composites.It is demonstrated that layered dMO and GC-dMO undergo a structural transition from K-birnessite to the Zn-buserite phase upon the first discharge,which enhances the intercalation of Zn^(2+)ions,H_(2)O molecules in the layered structure.The GC-dMO cathode exhibits an excellent capacity of 302 mAh g^(-1)at a current density of 100 mAg^(-1)after 100 cycles as compared with the dMO cathode(159 mAhg^(-1)).The excellent electrochemical performance of the GC-dMO cathode owing to Co-doping and graphene oxide sheets enhances the interlayer gap and disorderness,and maintains structural stability,which facilitates the easy reverse intercalation and de-intercalation of Zn^(2+)ions and H_(2)O molecules.Therefore,GC-dMO is a promising cathode material for large-scale aqueous ZIBs.
基金supported in part by the National Key R&D Program of China (No.2021YFB2601404)Beijing Natural Science Foundation (No.3232053)National Natural Science Foundation of China (Nos.51929701 and 52127812)。
文摘In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heightened concerns regarding insulation failures. Meanwhile, the underlying mechanism behind discharge breakdown failure and nanofiller enhancement under high-frequency electrical stress remains unclear. An electric-thermal coupled discharge breakdown phase field model was constructed to study the evolution of the breakdown path in polyimide nanocomposite insulation subjected to high-frequency stress. The investigation focused on analyzing the effect of various factors, including frequency, temperature, and nanofiller shape, on the breakdown path of Polyimide(PI) composites. Additionally, it elucidated the enhancement mechanism of nano-modified composite insulation at the mesoscopic scale. The results indicated that with increasing frequency and temperature, the discharge breakdown path demonstrates accelerated development, accompanied by a gradual dominance of Joule heat energy. This enhancement is attributed to the dispersed electric field distribution and the hindering effect of the nanosheets. The research findings offer a theoretical foundation and methodological framework to inform the optimal design and performance management of new insulating materials utilized in high-frequency power equipment.
基金financially supported by the National Natural Science Foundation of China(No.52072151,52171211,52102253,52271218,and U22A20145)Taishan Scholars(No.ts201712050)+1 种基金Jinan Independent Innovative Team(2020GXRC015)Major Program of Shandong Province Natural Science Foundation(ZR2021ZD05)
文摘The orthorhombic CuNb_(2)O_(6)(O-CNO)is established as a competitive anode for lithium-ion capacitors(LICs)owing to its attractive compositional/structural merits.However,the high-temperature synthesis(>900℃)and controversial charge-storage mechanism always limit its applications.Herein,we develop a low-temperature strategy to fabricate a nano-blocks-constructed hierarchical accordional O-CNO framework by employing multilayered Nb_(2)CT_(x)as the niobium source.The intrinsic stress-induced formation/transformation mechanism of the monoclinic CuNb_(2)O_(6)to O-CNO is tentatively put forward.Furthermore,the integrated phase conversion and solid solution lithium-storage mechanism is reasonably unveiled with comprehensive in(ex)situ characterizations.Thanks to its unique structural merits and lithium-storage process,the resulted O-CNO anode is endowed with a large capacity of 150.3 mAh g^(-1)at 2.0 A g^(-1),along with long-duration cycling behaviors.Furthermore,the constructed O-CNO-based LICs exhibit a high energy(138.9 Wh kg^(-1))and power(4.0 kW kg^(-1))densities with a modest cycling stability(15.8%capacity degradation after 3000 consecutive cycles).More meaningfully,the in-depth insights into the formation and charge-storage process here can promote the extensive development of binary metal Nb-based oxides for advanced LICs.
基金sponsored by the Helmholtz Association,the China Scholarship Council(CSC)partially funded by the German Research Foundation,DFG(Project No.MA 5039/4-1)。
文摘Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evolution of Sn anode during lithiation and delithiation,synchrotron X-ray energydispersive diffraction and X-ray tomography are simultaneously employed during Li/Sn cell operation.The intermediate Li-Sn alloy phases during de/lithiation are identified,and their dynamic phase transformation is unraveled which is further correlated with the volume variation of the Sn at particle-and electrode-level.Moreover,we find that the Sn particle expansion/shrinkage induced particle displacement is anisotropic:the displacement perpendicular to the electrode surface(z-axis)is more pronounced compared to the directions(x-and y-axis)along the electrode surface.This anisotropic particle displacement leads to an anisotropic volume variation at the electrode level and eventually generates a net electrode expansion towards the separator after cycling,which could be one of the root causes of mechanical detachment and delamination of electrodes during long-term operation.The unraveled chemical evolution of Li-Sn and deep insights into the microstructural evolution of Sn anode provided here could guide future design and engineering of Sn and other alloy anodes for high energy density Li-and Na-ion batteries.
基金financially funded by Natural Science Basic Research Program of Shaanxi(grant number 2022JM-239)Key Research and Development Project of Shaanxi Provincial(grant number 2021LLRH-05–08)。
文摘To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)structures in the Mg-Gd-Y-Zn-Zr alloy annealed at 300℃~500℃.Various types of metastable LPSO building block clusters were found to exist in alloy structures at different temperatures,which precipitate during the solidification and homogenization process.The stability of Zn/Y clusters is explained by the first principles of density functional theory.The LPSO structure is distinguished by the arrangement of its different Zn/Y enriched LPSO structural units,which comprises local fcc stacking sequences upon a tightly packed plane.The presence of solute atoms causes local lattice distortion,thereby enabling the rearrangement of Mg atoms in the different configurations in the local lattice,and local HCP-FCC transitions occur between Mg and Zn atoms occupying the nearest neighbor positions.This finding indicates that LPSO structures can generate necessary Schockley partial dislocations on specific slip surfaces,providing direct evidence of the transition from 18R to 14H.Growth of the LPSO,devoid of any defects and non-coherent interfaces,was observed separately from other precipitated phases.As a result,the precipitation sequence of LPSO in the solidification stage was as follows:Zn/Ycluster+Mg layers→various metastable LPSO building block clusters→18R/24R LPSO;whereas the precipitation sequence of LPSO during homogenization treatment was observed to be as follows:18R LPSO→various metastable LPSO building block clusters→14H LPSO.Of these,14H LPSO was found to be the most thermodynamically stable structure.
基金Funded by the National Natural Science Foundation of China(No.52075058)the Natural Science Foundation of Chongqing(No.cstc2021jcyj-msxmX1112)the Research and Demonstration of Key Technologies for Forging High-performance Aluminum Alloys for Aerospace Applications(No.Z20210348)。
文摘An accurate flow stress model was established by considering the parameters of strain rate,strain and temperature as well asβ→a+βphase transformation in order to develop the plastic forming theory of TC18 titanium alloy.Firstly,the phase transition kinetics of TC18 titanium alloy during isothermal and continuous cooling at 1073 and 1273 K was studied by thermodynamic calculation,meanwhile,the relationship of volume fraction of phase transition with temperature and time was obtained.Constitutive models were calculated by investigating flow behaviors under hot compression tests with the strain rates of 0.001-1s^(-1) and temperatures of 973-1223 K in the singleβand a+βregions in TC18 titanium alloy,respectively.By combining the phase transformation dynamic kinetics with constitutive models,an accurate flow stress model was established,providing theoretical basis and data support for the hot forging of TC18 titanium alloy.
基金Project supported by Shanghai Leading Academic Discipline Project, China (Grant No T0104), the Shanghai Nano-technology Promotion Center and Science & Technology of Shanghai Municipality, China (Grant No 0652nm005), Science Foundation of Shanghai Municipal Commission Education and Science and Technology Commission of Shanghai Municipal, China (Grant No 06PJ14042).
文摘In this paper, TitaiJum dioxide (TiO2) rutile single crystal was irradiated by infrared femtosecond laser pulses with repetition rate of 250 kHz. For a P-polarized femtosecond laser, the periodic nanograting structure on the ablation crater surface was formed . The periodicity is much less than the laser wavelength. The direction of nanograting alignment depends on the polarization laser beam. Micro-Raman spectra show that the intensity of Eg Raman vibrating mode of rutile phase increases and that of Alg Raman vibrating mode decreases apparently within the ablation crater. With the increase of irradiation time and laser average power, the Raman vibrating modes of anatase phase emerged. Rutile phase of TiO2 single crystal is partly transformed into anatase phase.
文摘This paper puts forward wavelet transform method to identify P and S phases in three component seismograms using polarization information contained in the wavelet transform coefficients of signal. The P and S wave locator functions are constructed by using eigenvalue analysis method to wavelet transform coefficient across several scales. Locator functions formed by wavelet transform have stated noise resistance capability, and is proved to be very effective in identifying the P and S arrivals of the test data and actual earthquake data.
基金the National Natural Science Foundation of China (Grant 11602203)Young Elite Scientist Sponsorship Program by the China Association for Science and Technology (Grant 2016QNRC001)Fundamental Research Funds for the Central Universities (Grant 2682018CX43).
文摘Existing experimental results have shown that four types of physical mechanisms, namely, martensite transformation, martensite reorientation, magnetic domain wall motion and magnetization vector rotation, can be activated during the magneto-mechanical deformation of NiMnGa ferromagnetic shape memory alloy (FSMA) single crystals. In this work, based on irreversible thermodynamics, a three-dimensional (3D) single crystal constitutive model is constructed by considering the aforementioned four mechanisms simultaneously. Three types of internal variables, i.e., the volume fraction of each martensite variant, the volume fraction of magnetic domain in each variant and the deviation angle between the magnetization vector, and easy axis are introduced to characterize the magneto-mechanical state of the single crystals. The thermodynamic driving force of each mechanism and the thermodynamic constraints on the constitutive model are obtained from Clausius's dissipative inequality and constructed Gibbs free energy. Then, thermodynamically consistent kinetic equations for the four mechanisms are proposed, respectively. Finally, the ability of the proposed model to describe the magneto-mechanical deformation of NiMnGa FSMA single crystals is verified by comparing the predictions with corresponding experimental results. It is shown that the proposed model can quantitatively capture the main experimental phenomena. Further, the proposed model is used to predict the deformations of the single crystals under the non-proportional mechanical loading conditions.
文摘Phase transformation is one of the factors that would significantly influence the ability to resist cavitation erosion of stainless steels. Due to the specific properties of duplex stainless steel, the heat treatment would bring about significant phase transformations. In this paper, we have examined the previous studies on the phase transition of stainless steel, including the literature on the classification of stainless steel, spinodal decomposition, sigma phase transformation, and cavitation erosion of double stainless steel. Through these literature investigations, the destruction of cavitation erosion on duplex stainless steel can be clearly known, and the causes of failure of duplex stainless steel in seawater can be clarified, thus providing a theoretical basis for subsequent scientific research. And the review is about to help assess the possibility of using bulk heat treatment to improve the cavitation erosion (CE) behaviour of the duplex stainless steel 7MoPLUS.
文摘The effects of dynamic electropulsing on microstructure changes and phase transformations of a rolled Mg-9Al-1Zn alloy were studied by using optical microscopy, X-ray diffraction, back-scattered scanning microscopy and transmission electron microscopy techniques. The decomposition of β phase was accelerated under dynamic electropulsing, compared with the conventional thermal processes. Dynamic electropulsing was less effective in affecting the phase transformations, but more effective in reducing residual stress than the static electropulsing. Dynamic electropulsing improved machinability of single point diamond turning, the mechanism of which is discussed from the point of view of dislocation dynamics.
文摘Practically,the load currents in three phases are asymmetric in the power system.It means that the impedances are different in all three phases.If the consumer’s transformer neutral cut off and/or was disconnected from the neutral of power supply source,then there will be some trouble and failure occurred.The current in the neutral wire drops down to zero when the neutral wire is cut off and the phase currents of all three-phase equal to each other since there was no return wire.The currents are equal but the voltages at the phase consumers are different.Especially for residential single-phase consumers,the voltage at the consumers of the phase varies differently for three phase systems when the neutral wire was disconnected at consumer side and even the voltage at the consumers one or two of those three phases becomes over nominal voltage or reaches nearly line voltage.In this case,the electronic appliances in that phase will be fed by high voltage than the rated value and they can be broken down.In the power system of UB(Ulaanbaatar)city,there are some occasional such kind of failures every year.Obviously,many electronic appliances were broken down due to high voltage and the electricity utility companies respond for service charge of damaged parts.
基金supported by the National Natural Science Foundation of China(Nos.52201203 and 52171107)the Hebei Provincial Natural Science Foundation,China(No.E2021501026)+1 种基金the National Natural Science Foundation of China-Joint Fund of Iron and Steel Research(No.U1960204)the“333”Talent Project of Hebei Province,China(No.B20221001).
文摘Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step solid solution treatments on microstructure andδphase precipitation of Inconel 718 alloy were studied,and the transformation mechanism fromγ″metastable phase toδphase was clarified.The precipitates were statistically analyzed by X-ray diffractometry.The results show that theδphase content firstly increased,and then decreased with the temperature of the second-step solid solution.The changes in microstructure andδphase were studied by scanning electron microscopy and transmission electron microscopy.An intragranularδphase formed in Inconel 718 alloy at the second-[100]_(δ)[011]γ step solid solution temperature of 925℃,and its orientation relationship withγmatrix was determined as//and(010)_(δ)//(111)γ.Furthermore,the Vickers hardness of different heat treatment samples was measured,and the sample treated by second-step solid solution at 1010℃ reached the maximum hardness of HV 446.84.
基金supported by the National Natural Science Foundation of China(61801503).
文摘Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employing sparse Fourier transform(SFT)and the relevant hardware architecture for field programmable gate array(FPGA)and application-specific integrated circuit(ASIC)implementation.Efforts are made at both the algorithmic level and the implementation level to enable merged searching of code phase and Doppler frequency without incurring massive hardware expenditure.Compared with the existing code acquisition approaches,it is shown from theoretical analysis and experimental results that the proposed design can shorten processing latency and reduce hardware complexity without degrading the acquisition probability.