This paper presents a multidisciplinary structural analysis of a 165 km2 area in the Northern Rift Zone and the Tjörnes Fracture Zone of Iceland, and unravels the tectonic control of the Theistareykir geother...This paper presents a multidisciplinary structural analysis of a 165 km2 area in the Northern Rift Zone and the Tjörnes Fracture Zone of Iceland, and unravels the tectonic control of the Theistareykir geothermal field and its surroundings. About 10729 fracture segments (faults, open fractures, joints) are identified in the upper Tertiary to Holocene igneous series. The segments were extracted from aerial images and hillshade, and then analyzed in terms of number of sets, geometry, motions, frequency, and relative age. The correlation with surface geothermal manifestations, resistivity, earthquakes, and occasional well data reveals the critical regional and local fractures at the surface, reservoir level and greater depth. The main conclusions of this study are: 1) The structural pattern consists of N-S rift-parallel extensional fractures and the Riedel shears of the transform zone striking NNE, ENE, E-W, WNW and NW, which compartmentalize together the blocks at any scale. 2) The en échelon segmentation shows strike and oblique slips on the Riedel shears, with a dextral component on the WNW and NW planes and a sinistral component on the NNE to ENE faults. 3) Fractures form under the influence of the transform mechanism and the effect of rifting becomes significant only with time. 4) The WNW dextral oblique-slip Stórihver Fault of the transform zone has a horsetail splay that extends eastwards into the geothermal field. There, this structure, along with few NW, ENE, NNE and N-S fractures, controls the alteration, alignment of fumaroles, emanating deep gases. These fractures also rupture during natural or induced earthquakes. 5) The resistivity anomalies present en échelon geometries controlled by the six fracture sets. These anomalies display clockwise and anticlockwise rotations within the upper 8 km crustal depth, but at 8 km depth, only three sets (the N-S rift structures, and the E-W and the NW Riedel shears) are present at the rift and transform plate boundaries. Results of this study are relevant to resource exploration in other complex extensional contexts where rift and transform interact.ööö展开更多
A theoretical model that takes into account the flee-volume aided cooperative shearing of shear transformation zones (STZs) is developed to quantitatively understand the ductile-to-brittle transition (DBT) of meta...A theoretical model that takes into account the flee-volume aided cooperative shearing of shear transformation zones (STZs) is developed to quantitatively understand the ductile-to-brittle transition (DBT) of metallic glasses. The STZ dilatational strain is defined as the ratio of STZ-activated free volume to STZ volume itself. The model demonstrates that the STZ dilatational strain will increase drastically and exceed the characteristic shear strain of STZ as temperature decreases below a critical value. This critical temperature is in good agreement with the experimentally measured DBT temperature. Our results suggest that the DBT of metallic glasses is underpinned by the transition of atomic-cluster motions from STZ-tvpe rearrangements to dilatational processes (termed tension transformation zones (TrZs)).展开更多
Taking precipitation process during May 17-18,2009 as an example,this paper analyzed and summarized the operational conditions of artificial precipitation enhancement in Liaoning Province.Operational conditions can be...Taking precipitation process during May 17-18,2009 as an example,this paper analyzed and summarized the operational conditions of artificial precipitation enhancement in Liaoning Province.Operational conditions can be divided into two categories,namely,macro-weather and cloud micro-physical operational conditions,this paper described their respective indexes and criterions as well as their effect and application in formulation and command of artificial precipitation enhancement plan real-timely.展开更多
This paper presents a multidisciplinary structural analysis of the Reykjanes Peninsula where Holocene deformation of a young oblique rift controls the geothermal processes in presence of a transform segment. The new s...This paper presents a multidisciplinary structural analysis of the Reykjanes Peninsula where Holocene deformation of a young oblique rift controls the geothermal processes in presence of a transform segment. The new structural map from aerial images and outcrops is correlated with selected surface and subsurface data and shows a complex pattern: NNE extensional rift structures, N-S dextral and ENE sinistral oblique-slip Riedel shears of the transform zone, and WNW and NW dextral oblique-slip faults. Shear fractures are more common, and along with the NNE fractures, they compartmentalise the crustal blocks at any scale. The fractures are within two ENE Riedel shear zones, indicating a minimum 7.5 km wide transform zone. The greatly deformed Southern Riedel Shear Zone is bounded to the north and the south by the 1972 and the 2013 earthquake swarms. This shear zone contains the geothermal field in a highly fractured block to the west of a major NW structure. Some of the deformations are: a) clockwise rotation of rift structures by the 1972 earthquake zone, inducing local compression;b) magma injection into extensional and oblique-slip shear fractures;c) reactivation of rift structures by transform zone earthquakes;d) tectonic control of reservoir boundaries by WNW and ENE shear fractures, and the distribution of surface alteration, fumaroles, CO2 flux, reservoir fluid flow and the overall shape of pressure drawdown by N-S, ENE, WNW/NW and NNE fractures. Results demonstrate the role of seismo-tectonic boundaries beyond which fault types and density change, with implications for permeability.展开更多
The diverging plate boundaries in North Iceland and its shelf display a complex tectonic at the Kolbeinsey Ridge (K-R), the Northern Rift Zone (NRZ), and the Tj?rnes Fracture Zone containing the Grímsey Oblique R...The diverging plate boundaries in North Iceland and its shelf display a complex tectonic at the Kolbeinsey Ridge (K-R), the Northern Rift Zone (NRZ), and the Tj?rnes Fracture Zone containing the Grímsey Oblique Rift (GOR), the Húsavík-Flatey Fault (HFF), and the Dalvík Lineament (DL). While active deformation is well-known, the structural pattern is sporadically mapped and a comprehensive account of the upper Tertiary-present deformation is not fully at hand. To address the gaps, this paper provides new regional tectonic maps with continuous coverage, and detailed analyses of the deformation. Faults, open fractures, prominent joints and volcanic edifices were identified on Multibeam/Single beam, Spot 5, and Digital Elevation Model, and subjected to multidisciplinary structural analysis and correlation with selected data. Some of the results are: 1) Six sets constitute the structural pattern. The N-S rift-parallel normal faults are 1/3, and the shear fractures of the transform zone and the oblique rift 2/3 of the fracture population. The en échelon arrangements above deep-seated shear zones indicate dextral slip on WNW to NW, and sinistral slip on NNE to ENE faults, conformable with earthquake data. 2) During the polyphase tectonic, the six sets led to basin and horst formation, block compartmentalisation, rotation, horsetail splay, rhomb-graben in relay zone of strike-slips, and volcanism. 3) Listric faults are absent and the steeply-dipping faults are antithetic, synthetic, or form extensional flower structures above 4 km depth. The Plio-pleistocene/present syn-sedimentary deformation caused a deep half graben in the Eyjafjarearáll Basin (Ey), fault growth, rollover, and sediment onlaps, with some of the faults still active. 4) The plate boundaries of K-R/Ey, GOR/?xarfjreur/NRZ, and DL delimit a major microplate labelled here as Grímsey-Tj?rnes-Dalvík. 5) The WNW earthquake cluster in GOR corresponds either to a blind horsetail splay fault or to initiation of a transform segment parallel to the HFF. The described tectonic-sedimentary-magmatic deformation is relevant to other diverging plate boundaries where similar sets control the hydrocarbon and geothermal resources.展开更多
A structural analysis was undertaken in the South Iceland Seismic Zone (SISZ) transform zone, and in the Hreppar Microplate (HMP) located between the propagating Eastern Rift Zone (ERZ) and the receding Western Rift Z...A structural analysis was undertaken in the South Iceland Seismic Zone (SISZ) transform zone, and in the Hreppar Microplate (HMP) located between the propagating Eastern Rift Zone (ERZ) and the receding Western Rift Zone (WRZ). The age of the oceanic crust in these areas is 3.4 Ma to present. About 20,000 fracture segments on aerial images reflect the dominance of NNE extensional structures in the WRZ. Around 9,000 basement faults, intrusions, secondary fractures, surface ruptures of earthquakes, and leakages were mapped in the outcrops of the HMP and the SISZ. About 23% of these fractures strike NNE, while 77% are dominantly northerly dextral and ENE sinistral, and secondarily E-W, WNW and NW sinistral strike- and oblique-slip structures, forming a Riedel shear pattern typical of a transform zone. Dyke injections into Riedel shears indicate a leaky transform zone. Fractures reactivated, accumulated slip, and re-opened for fluid flow. The ENE faults dip mostly to the southeast and could be the present boundary of the SISZ to the north. A 10 - 30 km wide ENE structural zone hosts a valley to the east, which could be deeper in the west. This ENE zone contains all the earthquakes, dominant ENE rivers, frequent ENE secondary fractures, and is likely the active part of the SISZ. The HMP does not show rotation since 3.4 Ma despite being between two rift segments. Future propagation/recession of the rift segments along their N55°E sections would cause a migration and a clockwise rotation of the SISZ from ENE to E-W. The boundary faults of the SISZ would then be E-W, with unchanged internal Riedel shears, compensating its sinistral motion. Insights into complexities of diverging plate boundaries are critical for resource management in such tectonic contexts.展开更多
Immunotherapy for cervical intraepithelial neoplasia (CIN) has not yet reached clinical applicability, but seems sensible and shows promising preliminary results. One of the most promising forms of immunotherapy for...Immunotherapy for cervical intraepithelial neoplasia (CIN) has not yet reached clinical applicability, but seems sensible and shows promising preliminary results. One of the most promising forms of immunotherapy for CIN may currently be imiquimod, because of its established role in other human papillomavirus (HPV)-induced genital conditions, its promising treatment effcacy in high-grade CIN, and its off-label availability. Although imiquimod cannot yet replace the current gold standard treatment for CIN [ i.e. , large loop excision of the transformation zone (LLETZ)] in all patients, it may be considered in subgroups of patients; for example, young women who may wish to become pregnant in the future, or patients with recurrent CIN lesions in whom a second LLETZ is to be avoided. Immunotherapy of CIN could be extended to post-treatment vaccination, in order to prevent new HPV infections and disease recurrence.展开更多
We bring new insights into fracture permeability with 7 analogues from the intraplate outcrops of West Iceland (WI), the active South Iceland transform zone (SISZ), the intersection of rift and SISZ near Hengill (Reyk...We bring new insights into fracture permeability with 7 analogues from the intraplate outcrops of West Iceland (WI), the active South Iceland transform zone (SISZ), the intersection of rift and SISZ near Hengill (Reykjafjall-RF), and the Reykjanes oblique rift (RP). WI formed at Tertiary plate boundaries, shifted away, is now cut by the Quaternary intraplate Sn<span style="white-space:nowrap;">æ</span>fellsnes volcanic zone (SVZ), and undergoes occasional earthquakes. By contrast, fractures are being formed and reactivated under intense plate boundary earthquakes in the younger SISZ, RF and RP. Our mapping of stratigraphy, basement fractures, surface ruptures of earthquakes, and leakages of cold and hot water in all areas shows that: 1) In active SISZ, RF and RP, permeable fractures are identical to N-S to NNW dextral, ENE to E-W sinistral, and WNW to NNW sinistral source faults of earthquakes, acting as Riedel shears that accommodate the sinistral motion of the transform zone. The NNE/NE rift-parallel extensional fractures are the least frequent permeable set. Notably, the NW and WNW sets also show dextral motions in RP where they could be splay of each other but belong to a separate developed fracture system, and in the SISZ where the NW set is a splay of a N-S source fault of earthquake. However, permeable fractures in the intraplate WI are only oblique-slip sets striking N-S to NNW dextral, ENE sinistral, and WNW dextral parallel to the SVZ. 2) In each area, the permeable sets fit the fault plane solutions of intraplate or plate boundary earthquakes, as well as the latest stress fields that allow fracture opening for fluid flow. 3) Fractures are more open in the younger SISZ, RF, and RP, with leakages along the fractures and their splays rather than by their tips or in the stepovers. In the older WI where the crust and fractures are filled with secondary minerals, leakages are as much along fractures as where numerous fracture intersections facilitate fluid flow. 4) In case of intersecting fractures, the strike and dip direction of the structures determine which set acts as a carrier or a barrier to the flow. 5) Although Iceland is more known for rifting, these analogues demonstrate that fracture permeability, block compartmentalisation, and fluid flow are controlled by the oblique-slip structures developed under transform mechanism.展开更多
Dynamic mechanical relaxation is a fundamental tool to understand the mechanical and physical properties of viscoelastic materials like glasses.Mechanical spectroscopy shows that the high-entropy bulk metallic glass(L...Dynamic mechanical relaxation is a fundamental tool to understand the mechanical and physical properties of viscoelastic materials like glasses.Mechanical spectroscopy shows that the high-entropy bulk metallic glass(La_(30)Ce_(30)Ni_(10)Al_(20)Co_(10))exhibits a distinctβ-relaxation feature.In the present research,dynamic mechanical analysis and thermal creep were performed using this bulk metallic glass material at a temperature domain around theβrelaxation.The components of total strain,including ideal elastic strain,anelastic strain,and viscous-plastic strain,were analyzed based on the model of shear transformation zones(STZs).The stochastic activation of STZ contributes to the anelastic strain.When the temperature or external stress is high enough or the timescale is long enough,the interaction between STZs induces viscous-plastic strain.When all the spectrum of STZs is activated,the quasi-steady-state creep is achieved.展开更多
The initial collision between Indian and Asian continents marked the starting point for transformation of land-sea thermal contrast,uplift of the Tibet-Himalaya orogen,and climate change in Asia.In this paper,we revie...The initial collision between Indian and Asian continents marked the starting point for transformation of land-sea thermal contrast,uplift of the Tibet-Himalaya orogen,and climate change in Asia.In this paper,we review the published literatures from the past 30 years in order to draw consensus on the processes of initial collision and suturing that took place between the Indian and Asian plates.Following a comparison of the different methods that have been used to constrain the initial timing of collision,we propose that the tectono-sedimentary response in the peripheral foreland basin provides the most sensitive index of this event,and that paleomagnetism presents independent evidence as an alternative,reliable,and quantitative research method.In contrast to previous studies that have suggested collision between India and Asia started in Pakistan between ca.55 Ma and50 Ma and progressively closed eastwards,more recent researches have indicated that this major event first occurred in the center of the Yarlung Tsangpo suture zone(YTSZ) between ca.65 Ma and 63 Ma and then spreading both eastwards and westwards.While continental collision is a complicated process,including the processes of deformation,sedimentation,metamorphism,and magmatism,different researchers have tended to define the nature of this event based on their own understanding,an intuitive bias that has meant that its initial timing has remained controversial for decades.Here,we recommend the use of reconstructions of each geological event within the orogenic evolution sequence as this will allow interpretation of collision timing on the basis of multidisciplinary methods.展开更多
The creep behaviors of the amorphous phase in a CuZr-based bulk metallic glass composite(BMGC)are studied by nanoindentation.Samples fabricated via higher cooling rates are found to exhibit more prominent creep,but a ...The creep behaviors of the amorphous phase in a CuZr-based bulk metallic glass composite(BMGC)are studied by nanoindentation.Samples fabricated via higher cooling rates are found to exhibit more prominent creep,but a smaller shear viscosity.The volume of the shear transformation zones(STZs)in the amorphous phase calculated based on a cooperative shear model increases with the cooling rate.The evolution of excess free volume created during creep deformation is clarified.A looser atomic arrangement leads to a larger STZ volume,thus facilitating creep deformation.This study gives a better understanding of the deformation behaviors of the amorphous phase in BMGCs.展开更多
The power-law relationship between creep rate decay and time is one of the intrinsic characteristics of metallic glasses.In the current work,a La_(30)Ce_(30)Ni_(10)Al_(20)Co_(10) high-entropy metallic glass was select...The power-law relationship between creep rate decay and time is one of the intrinsic characteristics of metallic glasses.In the current work,a La_(30)Ce_(30)Ni_(10)Al_(20)Co_(10) high-entropy metallic glass was selected as the model alloy to test the influences of physical aging and cyclic loading on the power-law creep mechanism,which was probed by the dynamic mechanical analysis in terms of the stochastic activation,and contiguous interplay and permeation of shear transformation zones.It is demonstrated that a notable discrepancy appears between thermal treatment and mechanical treatment on the power-law creep mechanism of this high-entropy metallic glass.On the one hand,physical aging below the glass transition temperature introduces the annihilation of potential shear transformation zones which contribute to creep.On the other hand,cyclic loading can tailor the“forward”jump operations competing with the“backward”ones of shear transformation zones by controlling the interval time(recovery time).The current research offers a new pathway towards understanding the creep mechanism of high-entropy metallic glasses.展开更多
文摘This paper presents a multidisciplinary structural analysis of a 165 km2 area in the Northern Rift Zone and the Tjörnes Fracture Zone of Iceland, and unravels the tectonic control of the Theistareykir geothermal field and its surroundings. About 10729 fracture segments (faults, open fractures, joints) are identified in the upper Tertiary to Holocene igneous series. The segments were extracted from aerial images and hillshade, and then analyzed in terms of number of sets, geometry, motions, frequency, and relative age. The correlation with surface geothermal manifestations, resistivity, earthquakes, and occasional well data reveals the critical regional and local fractures at the surface, reservoir level and greater depth. The main conclusions of this study are: 1) The structural pattern consists of N-S rift-parallel extensional fractures and the Riedel shears of the transform zone striking NNE, ENE, E-W, WNW and NW, which compartmentalize together the blocks at any scale. 2) The en échelon segmentation shows strike and oblique slips on the Riedel shears, with a dextral component on the WNW and NW planes and a sinistral component on the NNE to ENE faults. 3) Fractures form under the influence of the transform mechanism and the effect of rifting becomes significant only with time. 4) The WNW dextral oblique-slip Stórihver Fault of the transform zone has a horsetail splay that extends eastwards into the geothermal field. There, this structure, along with few NW, ENE, NNE and N-S fractures, controls the alteration, alignment of fumaroles, emanating deep gases. These fractures also rupture during natural or induced earthquakes. 5) The resistivity anomalies present en échelon geometries controlled by the six fracture sets. These anomalies display clockwise and anticlockwise rotations within the upper 8 km crustal depth, but at 8 km depth, only three sets (the N-S rift structures, and the E-W and the NW Riedel shears) are present at the rift and transform plate boundaries. Results of this study are relevant to resource exploration in other complex extensional contexts where rift and transform interact.ööö
基金supported by the National Nature Science Foundation of China (Grant Nos.11522221,11372315,11472287,and 51171138)the National Basic Research Program of China (Grant No.2012CB937500)+1 种基金the CAS/SAFEA International Partnership Program for Creative Research Teamspartially also by DFG
文摘A theoretical model that takes into account the flee-volume aided cooperative shearing of shear transformation zones (STZs) is developed to quantitatively understand the ductile-to-brittle transition (DBT) of metallic glasses. The STZ dilatational strain is defined as the ratio of STZ-activated free volume to STZ volume itself. The model demonstrates that the STZ dilatational strain will increase drastically and exceed the characteristic shear strain of STZ as temperature decreases below a critical value. This critical temperature is in good agreement with the experimentally measured DBT temperature. Our results suggest that the DBT of metallic glasses is underpinned by the transition of atomic-cluster motions from STZ-tvpe rearrangements to dilatational processes (termed tension transformation zones (TrZs)).
文摘Taking precipitation process during May 17-18,2009 as an example,this paper analyzed and summarized the operational conditions of artificial precipitation enhancement in Liaoning Province.Operational conditions can be divided into two categories,namely,macro-weather and cloud micro-physical operational conditions,this paper described their respective indexes and criterions as well as their effect and application in formulation and command of artificial precipitation enhancement plan real-timely.
基金funded by the European Union Horizon 2020 Research and Innovation Programme(grant agreement No.690771).
文摘This paper presents a multidisciplinary structural analysis of the Reykjanes Peninsula where Holocene deformation of a young oblique rift controls the geothermal processes in presence of a transform segment. The new structural map from aerial images and outcrops is correlated with selected surface and subsurface data and shows a complex pattern: NNE extensional rift structures, N-S dextral and ENE sinistral oblique-slip Riedel shears of the transform zone, and WNW and NW dextral oblique-slip faults. Shear fractures are more common, and along with the NNE fractures, they compartmentalise the crustal blocks at any scale. The fractures are within two ENE Riedel shear zones, indicating a minimum 7.5 km wide transform zone. The greatly deformed Southern Riedel Shear Zone is bounded to the north and the south by the 1972 and the 2013 earthquake swarms. This shear zone contains the geothermal field in a highly fractured block to the west of a major NW structure. Some of the deformations are: a) clockwise rotation of rift structures by the 1972 earthquake zone, inducing local compression;b) magma injection into extensional and oblique-slip shear fractures;c) reactivation of rift structures by transform zone earthquakes;d) tectonic control of reservoir boundaries by WNW and ENE shear fractures, and the distribution of surface alteration, fumaroles, CO2 flux, reservoir fluid flow and the overall shape of pressure drawdown by N-S, ENE, WNW/NW and NNE fractures. Results demonstrate the role of seismo-tectonic boundaries beyond which fault types and density change, with implications for permeability.
文摘The diverging plate boundaries in North Iceland and its shelf display a complex tectonic at the Kolbeinsey Ridge (K-R), the Northern Rift Zone (NRZ), and the Tj?rnes Fracture Zone containing the Grímsey Oblique Rift (GOR), the Húsavík-Flatey Fault (HFF), and the Dalvík Lineament (DL). While active deformation is well-known, the structural pattern is sporadically mapped and a comprehensive account of the upper Tertiary-present deformation is not fully at hand. To address the gaps, this paper provides new regional tectonic maps with continuous coverage, and detailed analyses of the deformation. Faults, open fractures, prominent joints and volcanic edifices were identified on Multibeam/Single beam, Spot 5, and Digital Elevation Model, and subjected to multidisciplinary structural analysis and correlation with selected data. Some of the results are: 1) Six sets constitute the structural pattern. The N-S rift-parallel normal faults are 1/3, and the shear fractures of the transform zone and the oblique rift 2/3 of the fracture population. The en échelon arrangements above deep-seated shear zones indicate dextral slip on WNW to NW, and sinistral slip on NNE to ENE faults, conformable with earthquake data. 2) During the polyphase tectonic, the six sets led to basin and horst formation, block compartmentalisation, rotation, horsetail splay, rhomb-graben in relay zone of strike-slips, and volcanism. 3) Listric faults are absent and the steeply-dipping faults are antithetic, synthetic, or form extensional flower structures above 4 km depth. The Plio-pleistocene/present syn-sedimentary deformation caused a deep half graben in the Eyjafjarearáll Basin (Ey), fault growth, rollover, and sediment onlaps, with some of the faults still active. 4) The plate boundaries of K-R/Ey, GOR/?xarfjreur/NRZ, and DL delimit a major microplate labelled here as Grímsey-Tj?rnes-Dalvík. 5) The WNW earthquake cluster in GOR corresponds either to a blind horsetail splay fault or to initiation of a transform segment parallel to the HFF. The described tectonic-sedimentary-magmatic deformation is relevant to other diverging plate boundaries where similar sets control the hydrocarbon and geothermal resources.
文摘A structural analysis was undertaken in the South Iceland Seismic Zone (SISZ) transform zone, and in the Hreppar Microplate (HMP) located between the propagating Eastern Rift Zone (ERZ) and the receding Western Rift Zone (WRZ). The age of the oceanic crust in these areas is 3.4 Ma to present. About 20,000 fracture segments on aerial images reflect the dominance of NNE extensional structures in the WRZ. Around 9,000 basement faults, intrusions, secondary fractures, surface ruptures of earthquakes, and leakages were mapped in the outcrops of the HMP and the SISZ. About 23% of these fractures strike NNE, while 77% are dominantly northerly dextral and ENE sinistral, and secondarily E-W, WNW and NW sinistral strike- and oblique-slip structures, forming a Riedel shear pattern typical of a transform zone. Dyke injections into Riedel shears indicate a leaky transform zone. Fractures reactivated, accumulated slip, and re-opened for fluid flow. The ENE faults dip mostly to the southeast and could be the present boundary of the SISZ to the north. A 10 - 30 km wide ENE structural zone hosts a valley to the east, which could be deeper in the west. This ENE zone contains all the earthquakes, dominant ENE rivers, frequent ENE secondary fractures, and is likely the active part of the SISZ. The HMP does not show rotation since 3.4 Ma despite being between two rift segments. Future propagation/recession of the rift segments along their N55°E sections would cause a migration and a clockwise rotation of the SISZ from ENE to E-W. The boundary faults of the SISZ would then be E-W, with unchanged internal Riedel shears, compensating its sinistral motion. Insights into complexities of diverging plate boundaries are critical for resource management in such tectonic contexts.
文摘Immunotherapy for cervical intraepithelial neoplasia (CIN) has not yet reached clinical applicability, but seems sensible and shows promising preliminary results. One of the most promising forms of immunotherapy for CIN may currently be imiquimod, because of its established role in other human papillomavirus (HPV)-induced genital conditions, its promising treatment effcacy in high-grade CIN, and its off-label availability. Although imiquimod cannot yet replace the current gold standard treatment for CIN [ i.e. , large loop excision of the transformation zone (LLETZ)] in all patients, it may be considered in subgroups of patients; for example, young women who may wish to become pregnant in the future, or patients with recurrent CIN lesions in whom a second LLETZ is to be avoided. Immunotherapy of CIN could be extended to post-treatment vaccination, in order to prevent new HPV infections and disease recurrence.
文摘We bring new insights into fracture permeability with 7 analogues from the intraplate outcrops of West Iceland (WI), the active South Iceland transform zone (SISZ), the intersection of rift and SISZ near Hengill (Reykjafjall-RF), and the Reykjanes oblique rift (RP). WI formed at Tertiary plate boundaries, shifted away, is now cut by the Quaternary intraplate Sn<span style="white-space:nowrap;">æ</span>fellsnes volcanic zone (SVZ), and undergoes occasional earthquakes. By contrast, fractures are being formed and reactivated under intense plate boundary earthquakes in the younger SISZ, RF and RP. Our mapping of stratigraphy, basement fractures, surface ruptures of earthquakes, and leakages of cold and hot water in all areas shows that: 1) In active SISZ, RF and RP, permeable fractures are identical to N-S to NNW dextral, ENE to E-W sinistral, and WNW to NNW sinistral source faults of earthquakes, acting as Riedel shears that accommodate the sinistral motion of the transform zone. The NNE/NE rift-parallel extensional fractures are the least frequent permeable set. Notably, the NW and WNW sets also show dextral motions in RP where they could be splay of each other but belong to a separate developed fracture system, and in the SISZ where the NW set is a splay of a N-S source fault of earthquake. However, permeable fractures in the intraplate WI are only oblique-slip sets striking N-S to NNW dextral, ENE sinistral, and WNW dextral parallel to the SVZ. 2) In each area, the permeable sets fit the fault plane solutions of intraplate or plate boundary earthquakes, as well as the latest stress fields that allow fracture opening for fluid flow. 3) Fractures are more open in the younger SISZ, RF, and RP, with leakages along the fractures and their splays rather than by their tips or in the stepovers. In the older WI where the crust and fractures are filled with secondary minerals, leakages are as much along fractures as where numerous fracture intersections facilitate fluid flow. 4) In case of intersecting fractures, the strike and dip direction of the structures determine which set acts as a carrier or a barrier to the flow. 5) Although Iceland is more known for rifting, these analogues demonstrate that fracture permeability, block compartmentalisation, and fluid flow are controlled by the oblique-slip structures developed under transform mechanism.
基金supported by the National Natural Science Foundation of China (Grant No. 51971178)the Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province (Grant No. 2021JC-12)+2 种基金financial support from MICINN(Grant No. FIS2017-82625-P)Generalitat de Catalunya (Grant No.2017SGR0042)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(Grant No. CX2021015)financially supported by the National Natural Science Foundation of China (Grant No. 12072344)
文摘Dynamic mechanical relaxation is a fundamental tool to understand the mechanical and physical properties of viscoelastic materials like glasses.Mechanical spectroscopy shows that the high-entropy bulk metallic glass(La_(30)Ce_(30)Ni_(10)Al_(20)Co_(10))exhibits a distinctβ-relaxation feature.In the present research,dynamic mechanical analysis and thermal creep were performed using this bulk metallic glass material at a temperature domain around theβrelaxation.The components of total strain,including ideal elastic strain,anelastic strain,and viscous-plastic strain,were analyzed based on the model of shear transformation zones(STZs).The stochastic activation of STZ contributes to the anelastic strain.When the temperature or external stress is high enough or the timescale is long enough,the interaction between STZs induces viscous-plastic strain.When all the spectrum of STZs is activated,the quasi-steady-state creep is achieved.
基金supported by the Chinese Academy of Sciences(Grant No.XDB03010401)the National Key Research and Development Plan(Grant No.2016YFC0600303)National Natural Science Foundation of China(Grant No.41490615)
文摘The initial collision between Indian and Asian continents marked the starting point for transformation of land-sea thermal contrast,uplift of the Tibet-Himalaya orogen,and climate change in Asia.In this paper,we review the published literatures from the past 30 years in order to draw consensus on the processes of initial collision and suturing that took place between the Indian and Asian plates.Following a comparison of the different methods that have been used to constrain the initial timing of collision,we propose that the tectono-sedimentary response in the peripheral foreland basin provides the most sensitive index of this event,and that paleomagnetism presents independent evidence as an alternative,reliable,and quantitative research method.In contrast to previous studies that have suggested collision between India and Asia started in Pakistan between ca.55 Ma and50 Ma and progressively closed eastwards,more recent researches have indicated that this major event first occurred in the center of the Yarlung Tsangpo suture zone(YTSZ) between ca.65 Ma and 63 Ma and then spreading both eastwards and westwards.While continental collision is a complicated process,including the processes of deformation,sedimentation,metamorphism,and magmatism,different researchers have tended to define the nature of this event based on their own understanding,an intuitive bias that has meant that its initial timing has remained controversial for decades.Here,we recommend the use of reconstructions of each geological event within the orogenic evolution sequence as this will allow interpretation of collision timing on the basis of multidisciplinary methods.
基金supported by the National Natural Science Foundation of China(Grant Nos.51827801,51871076,51671070 and 51671071)the Kingboard Professorship Endowment of the University of Hong Kong。
文摘The creep behaviors of the amorphous phase in a CuZr-based bulk metallic glass composite(BMGC)are studied by nanoindentation.Samples fabricated via higher cooling rates are found to exhibit more prominent creep,but a smaller shear viscosity.The volume of the shear transformation zones(STZs)in the amorphous phase calculated based on a cooperative shear model increases with the cooling rate.The evolution of excess free volume created during creep deformation is clarified.A looser atomic arrangement leads to a larger STZ volume,thus facilitating creep deformation.This study gives a better understanding of the deformation behaviors of the amorphous phase in BMGCs.
基金the National Natural Science Foundation of China(NSFC,No.51971178)the Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province(No.2021JC-12)+3 种基金the Natural Science Foundation of Chongqing(No.cstc2020jcyj-jq X0001)sponsored by Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(No.CX2021015)financial support from MICINN(grant PID2020112975GB-I00)Generalitat de Catalunya(grant 2017SGR0042)。
文摘The power-law relationship between creep rate decay and time is one of the intrinsic characteristics of metallic glasses.In the current work,a La_(30)Ce_(30)Ni_(10)Al_(20)Co_(10) high-entropy metallic glass was selected as the model alloy to test the influences of physical aging and cyclic loading on the power-law creep mechanism,which was probed by the dynamic mechanical analysis in terms of the stochastic activation,and contiguous interplay and permeation of shear transformation zones.It is demonstrated that a notable discrepancy appears between thermal treatment and mechanical treatment on the power-law creep mechanism of this high-entropy metallic glass.On the one hand,physical aging below the glass transition temperature introduces the annihilation of potential shear transformation zones which contribute to creep.On the other hand,cyclic loading can tailor the“forward”jump operations competing with the“backward”ones of shear transformation zones by controlling the interval time(recovery time).The current research offers a new pathway towards understanding the creep mechanism of high-entropy metallic glasses.