The present article is concerned with the implementation of a recent semi-analytical method referred to as fractional reduced differential transform method (FRDTM) for computation of approximate solution of time-fra...The present article is concerned with the implementation of a recent semi-analytical method referred to as fractional reduced differential transform method (FRDTM) for computation of approximate solution of time-fractional gas dynamics equation (TFGDE) arising in shock fronts. In this approach, the fractional derivative is described in the Caputo sense. Four numeric experiments have been carried out to confirm the validity and the efficiency of the method. It is found that the exact or a closed approximate analytical solution of a fractional nonlinear differential equations arising in allied science and engineering can be obtained easily. Moreover, due to its small size of calculation contrary to the other analytical approaches while dealing with a complex and tedious physical problems arising in various branches of natural sciences and engineering, it is very easy to implement.展开更多
A nonlinear model representing oxygen diffusion accompanied by the Michaelis-Menten consumption kinetics inside a spherical cell is solved analytically by the differential transform method (DTM) and the modified Ado...A nonlinear model representing oxygen diffusion accompanied by the Michaelis-Menten consumption kinetics inside a spherical cell is solved analytically by the differential transform method (DTM) and the modified Adomian decomposition method (MADM). A perfect agreement between the literature data and the results from the proposed展开更多
文摘The present article is concerned with the implementation of a recent semi-analytical method referred to as fractional reduced differential transform method (FRDTM) for computation of approximate solution of time-fractional gas dynamics equation (TFGDE) arising in shock fronts. In this approach, the fractional derivative is described in the Caputo sense. Four numeric experiments have been carried out to confirm the validity and the efficiency of the method. It is found that the exact or a closed approximate analytical solution of a fractional nonlinear differential equations arising in allied science and engineering can be obtained easily. Moreover, due to its small size of calculation contrary to the other analytical approaches while dealing with a complex and tedious physical problems arising in various branches of natural sciences and engineering, it is very easy to implement.
文摘A nonlinear model representing oxygen diffusion accompanied by the Michaelis-Menten consumption kinetics inside a spherical cell is solved analytically by the differential transform method (DTM) and the modified Adomian decomposition method (MADM). A perfect agreement between the literature data and the results from the proposed