期刊文献+
共找到850篇文章
< 1 2 43 >
每页显示 20 50 100
Large animal models for Huntington's disease research 被引量:1
1
作者 Bofeng Han Weien Liang +3 位作者 Xiao-Jiang Li Shihua Li Sen Yan Zhuchi Tu 《Zoological Research》 SCIE CSCD 2024年第2期275-283,共9页
Huntington'sdisease(HD)isahereditary neurodegenerative disorder for which there is currently no effectivetreatmentavailable.Consequently,the development of appropriate disease models is critical to thoroughly inve... Huntington'sdisease(HD)isahereditary neurodegenerative disorder for which there is currently no effectivetreatmentavailable.Consequently,the development of appropriate disease models is critical to thoroughly investigate disease progression.The genetic basis of HD involves the abnormal expansion of CAG repeats in the huntingtin(HTT)gene,leading to the expansion of a polyglutamine repeat in the HTT protein.Mutant HTT carrying the expanded polyglutamine repeat undergoes misfolding and forms aggregates in the brain,which precipitate selective neuronal loss in specific brain regions.Animal models play an important role in elucidating the pathogenesis of neurodegenerative disorders such as HD and in identifying potential therapeutic targets.Due to the marked species differences between rodents and larger animals,substantial efforts have been directed toward establishing large animal models for HD research.These models are pivotal for advancing the discovery of novel therapeutic targets,enhancing effective drug delivery methods,and improving treatment outcomes.We have explored the advantages of utilizing large animal models,particularly pigs,in previous reviews.Since then,however,significant progress has been made in developing more sophisticated animal models that faithfully replicate the typical pathology of HD.In the current review,we provide a comprehensive overview of large animal models of HD,incorporating recent findings regarding the establishment of HD knock-in(KI)pigs and their genetic therapy.We also explore the utilization of large animal models in HD research,with a focus on sheep,non-human primates(NHPs),and pigs.Our objective is to provide valuable insights into the application of these large animal models for the investigation and treatment of neurodegenerative disorders. 展开更多
关键词 Huntington's disease Large animal models SHEEP Non-human primates Transgenic pigs
下载PDF
Improvement in Tol2 transposon for efficient large-cargo capacity transgene applications in cultured cells and zebrafish(Danio rerio)
2
作者 Peng-Cheng Wang Hao Deng +2 位作者 Rang Xu Jiu-Lin Du Rongkun Tao 《Zoological Research》 SCIE CSCD 2024年第3期567-574,共8页
Most viruses and transposons serve as effective carriers for the introduction of foreign DNA up to 11 kb into vertebrate genomes.However,their activity markedly diminishes with payloads exceeding 11 kb.Expanding the p... Most viruses and transposons serve as effective carriers for the introduction of foreign DNA up to 11 kb into vertebrate genomes.However,their activity markedly diminishes with payloads exceeding 11 kb.Expanding the payload capacity of transposons could facilitate more sophisticated cargo designs,improving the regulation of expression and minimizing mutagenic risks associated with molecular therapeutics,metabolic engineering,and transgenic animal production.In this study,we improved the Tol2 transposon by increasing protein expression levels using a translational enhancer(QBI SP163,ST)and enhanced the nuclear targeting ability using the nuclear localization protein H2B(SHT).The modified Tol2 and ST transposon efficiently integrated large DNA cargos into human cell cultures(H1299),comparable to the well-established super PiggyBac system.Furthermore,mRNA from ST and SHT showed a significant increase in transgene delivery efficiency of large DNA payloads(8 kb,14 kb,and 24 kb)into zebrafish(Danio rerio).This study presents a modified Tol2 transposon as an enhanced nonviral vector for the delivery of large DNA payloads in transgenic applications. 展开更多
关键词 ZEBRAFISH Tol2 transposase TRANSGENE Large payload Synthetic biology
下载PDF
A chorismate mutase from Radopholus similis plays an essential role in pathogenicity
3
作者 Sihua Yang Junyi Li +4 位作者 Shuai Yang Shiqiao Tang Huizhong Wang Chunling Xu Hui Xie 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期923-937,共15页
In the process of infecting plants, plant parasitic nematodes release a series of proteins that play an essential role in the successful infection and pathogenesis of plant cells and tissues through stylets or body wa... In the process of infecting plants, plant parasitic nematodes release a series of proteins that play an essential role in the successful infection and pathogenesis of plant cells and tissues through stylets or body walls. In this study,based on transcriptome data, a chorismate mutase gene of Radopholus similis(RsCM) was identified and cloned,which is a single copy gene specifically expressed in the oesophageal gland and highly expressed in juveniles and females. Transient expression of RsCM in tobacco leaves showed that it was localised in the cytoplasm and nucleus of tobacco leaf cells, which inhibited the pattern-triggered immunity(PTI) induced by flg22, including callose deposition and defence gene expression, and cell death induced by immune elicitors BAX, but could not inhibit cell death induced by immune elicitors Gpa2/RBP-1. The RNA interference(RNAi) transgenic tomato of RsCM obviously inhibited the infection, pathogenicity, and reproduction of R. similis. However, the resistance of the overexpression transgenic tomato of RsCM to R. similis infection was significantly reduced, and the expression levels of two salicylic acid(SA) pathway genes(PR1 and PR5) in roots infected by the nematode were significantly down-regulated,which indicated that RsCM might be involved in the inhibition of SA pathway. The results of this study demonstrate that RsCM suppresses the host immune system and might be a new target for the control of R. similis, which also provides new data for the function and mechanism of CM genes of migratory parasitic plant nematodes. 展开更多
关键词 Radopholus similis chorismate mutase plant defense transgenic tomato
下载PDF
Selenocysteine methyltransferase SMT catalyzed the synthesis of Se-methylselenocysteine to regulate the accumulation of glucosinolates and sulforaphane in broccoli
4
作者 Qi Wu Junwei Wang +4 位作者 Yuxiao Tian Chunyan Zhou Shuxiang Mao Qiuyun Wu Ke Huang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第5期1151-1164,共14页
Selenocysteine methyltransferase(SMT)is a key enzyme involved in the Se metabolism pathway,and it is responsible for the catalysis of Se-methylselenocysteine(SeMSC)compound formation.Previous studies showed that selen... Selenocysteine methyltransferase(SMT)is a key enzyme involved in the Se metabolism pathway,and it is responsible for the catalysis of Se-methylselenocysteine(SeMSC)compound formation.Previous studies showed that selenium treatment activated SMT expression and promoted the accumulation of glucosinolates(GSLs)and sulforaphane,but the roles and functional mechanisms of SMT in mediating GSLs and sulforaphane synthesis remain unclear.In this study,we identified the BoSMT gene in broccoli and uncovered its roles in mediating GSLs biosynthesis.Transgenic assays revealed that BoSMT is involved in SeMSC biosynthesis in broccoli.More importantly,the contents of GSLs and sulforaphane were significantly increased in the BoSMT-overexpressing broccoli lines but decreased in the knockdown lines,suggesting that BoSMT played a positive role in regulating GSLs and sulforaphane synthesis.Further evidence indicated that BoSMT-mediated overaccumulation of GSLs and sulforaphane might be due to the increase in the endogenous SeMSC content.Compared with the mock(water)treatment,selenite-induced significantly increases of the SeMSC content in the BoSMT-knockdown plants partially compensated the phenotype of GSLs and sulforaphane loss.Compared with the mock treatment,exogenous SeMSC treatment significantly increased the contents of GSL and sulforaphane and activated GSL synthesis-related gene expression,suggesting that SeMSC acted as a positive regulator for GSL and sulforaphane production.Our findings provided novel insights into selenium-mediated GSLs and sulforaphane accumulation.The genetic manipulation of BoSMT might be a useful strategy for improving the dietary nutritional values of broccoli. 展开更多
关键词 Selenocysteine methyltransferase Transgenic broccoli Se-methylselenocysteine Glucosinolate sulforaphane Selenium
下载PDF
Wheat kinase TaSnRK2.4 forms a functional module with phosphatase TaPP2C01 and transcription factor TaABF2 to regulate drought response
5
作者 Yanyang Zhang Xiaoyang Hou +7 位作者 Tianjiao Li Ziyi Wang Jiaqi Zhang Chunlin Zhang Xianchang Liu Xinxin Shi Wanrong Duan Kai Xiao 《The Crop Journal》 SCIE CSCD 2024年第2期384-400,共17页
SNF1-related protein kinase 2(SnRK2)family members are essential components of the plant abscisic acid(ABA)signaling pathway initiated by osmotic stress and triggering a drought stress response.This study characterize... SNF1-related protein kinase 2(SnRK2)family members are essential components of the plant abscisic acid(ABA)signaling pathway initiated by osmotic stress and triggering a drought stress response.This study characterized the molecular properties of TaSnRK2.4 and its function in mediating adaptation to drought in Triticum aestivum.Transcripts of TaSnRK2.4 were upregulated upon drought and ABA signaling and associated with drought-and ABA-responsive cis-elements ABRE and DRE,and MYB and MYC binding sites in the promoter as indicated by reporter GUS protein staining and activity driven by truncations of the promoter.Yeast two-hybrid,BiFC,and Co-IP assays indicated that TaSnRK2.4 protein interacts with TaPP2C01 and an ABF transcription factor(TF)TaABF2.The results suggested that TaSnRK2.4 forms a functional TaPP2C01-TaSnRK2.4-TaABF2 module with its upstream and downstream partners.Transgene analysis revealed that TaSnRK2.4 and TaABF2 positively regulate drought tolerance whereas TaPP2C01 acts negatively by modulating stomatal movement,osmotic adjustment,reactive oxygen species(ROS)homeostasis,and root morphology.Expression analysis,yeast one-hybrid,and transcriptional activation assays indicated that several osmotic stress-responsive genes,including TaSLAC1-4,TaP5CS3,TaSOD5,TaCAT1,and TaPIN4,are regulated by TaABF2.Transgene analysis verified their functions in positively regulating stomatal movement(TaSLAC1-4),proline accumulation(TaP5CS3),SOD activity(TaSOD5),CAT activity(TaCAT1),and root morphology(TaPIN4).There were high correlations between plant biomass and yield with module transcripts in a wheat variety panel cultivated under drought conditions in the field.Our findings provide insights into understanding plant drought response underlying the SnRK2 signaling pathway in common wheat. 展开更多
关键词 Triticum aestivum SnRK2.4 kinase Gene expression Protein interaction Transgene analysis Transcriptional activation
下载PDF
Barley chitinase genes expression revamp resistance against whitefly (Bemisia Tabaci) in transgenic cotton (Gossypium hirsutum L.)
6
作者 BASHIR Samina YAQOOB Amina +7 位作者 BASHIR Rohina BUKHARI Shanila SHAHID Naila AZAM Saira BAKHSH Allah HUSNAIN Tayyab SHAHID Ahmad Ali RAO Abdul Qayyum 《Journal of Cotton Research》 CAS 2024年第1期90-100,共11页
Background Chitinase is an enzyme that hydrolyzes chitin,a major component of the exoskeleton of insects,including plant pests like whiteflies.The present study aimed to investigate the expression of chemically synthe... Background Chitinase is an enzyme that hydrolyzes chitin,a major component of the exoskeleton of insects,including plant pests like whiteflies.The present study aimed to investigate the expression of chemically synthesized barley ch1 and chi2 genes in cotton(Gossypium hirsutum)through Agrobacterium-mediated transformation.Fifty-five putative transgenic cotton plants were obtained,out of which fifteen plants successfully survived and were shifted to the field.Using gene-specific primers,amplification of 447 bp and 401 bp fragments confirmed the presence of the ch1 and chi2 genes in five transgenic cotton plants of the T0 generation.These five plants were further evalu-ated for their mRNA expression levels.The T0 transgenic cotton plants with the highest mRNA expression level and better yield performance in field,were selected to raise their subsequent progenies.Results The T1 cotton plants showed the highest mRNA expression levels of 3.5-fold in P10(2)for the ch1 gene and 3.7-fold in P2(1)for the chi2 gene.Fluorescent in situ hybridization(FISH)confirmed a single copy number of ch1 and chi2(hemizygous)on chromosome no.6.Furthermore,the efficacy of transgenes on whitefly was evaluated through an insect bioassay,where after 96 h of infestation,mortality rates of whitefly were calculated to be 78%–80%in transgenic cotton plants.The number of eggs on transgenic cotton plants were calculated to be 0.1%–0.12 per plant compared with the non-transgenic plants where egg number was calculated to be 0.90–1.00 per plant.Conclusion Based on these findings,it can be concluded that the chemically synthesized barley chitinase genes(ch1 and chi2)have the potential to be effective against insects with chitin exoskeletons,including whiteflies.The transgenic cotton plants expressing these genes showed increased resistance to whiteflies,resulting in reduced egg numbers and higher mortality rates. 展开更多
关键词 CHITINASE Cotton White fly TRANSGENE BIOASSAY
下载PDF
Fast,simple,efficient Agrobacterium rhizogenes-mediated transformation system to non-heading Chinese cabbage with transgenic roots
7
作者 Huiyu Wang Yushan Zheng +3 位作者 Qian Zhou Ying Li Tongkun Liu Xilin Hou 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期450-460,共11页
Non-heading Chinese cabbage, a variety of Brassica campestris, is an important vegetable crop in the Yangtze River Basin of China. However,the immaturity of its stable transformation system and its low transformation ... Non-heading Chinese cabbage, a variety of Brassica campestris, is an important vegetable crop in the Yangtze River Basin of China. However,the immaturity of its stable transformation system and its low transformation efficiency limit gene function research on non-heading Chinese cabbage. Agrobacterium rhizogenes-mediated(ARM) transgenic technology is a rapid and effective transformation method that has not yet been established for non-heading Chinese cabbage plants. Here, we optimized conventional ARM approaches(one-step and two-step transformation methods) suitable for living non-heading Chinese cabbage plants in nonsterile environments. Transgenic roots in composite non-heading Chinese cabbage plants were identified using phenotypic detection, fluorescence observation, and PCR analysis. The transformation efficiency of a two-step method on four five-day-old non-heading Chinese cabbage seedlings(Suzhouqing, Huangmeigui, Wuyueman, and Sijiu Caixin) was 43.33%-51.09%, whereas using the stout hypocotyl resulted in a transformation efficiency of 54.88% for the 30-day-old Sijiu Caixin.The one-step method outperformed the two-step method;the transformation efficiency of different varieties was above 60%, and both methods can be used to obtain transgenic roots for functional studies within one month. Finally, optimized ARM transformation methods can easily,quickly, and effectively produce composite non-heading Chinese cabbage plants with transgenic roots, providing a reliable foundation for gene function research and non-heading Chinese cabbage genetic improvement breeding. 展开更多
关键词 Agrobacterium rhizogenes Non-heading Chinese cabbage Transgenic roots Composite plant Transformation efficiency
下载PDF
Application of transgenic mice to the molecular pathogenesis of cataract
8
作者 Yue Zhang Xiao-Ya Chen +3 位作者 Yu-Zhu Hu Xiao Zhang Shun-Fei Zheng Shan-Shan Hu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第10期1929-1948,共20页
One of the most prevalent disorders that cause blindness worldwide is cataract,and its essence is the visual disorder caused by the opacity of the lens.The significant degree of variation in cataracts and the fact tha... One of the most prevalent disorders that cause blindness worldwide is cataract,and its essence is the visual disorder caused by the opacity of the lens.The significant degree of variation in cataracts and the fact that a variety of factors can impact a patient’s lens transparency make it especially crucial to investigate the pathogenesis of cataracts at the molecular level.It has been found that more than 60 genes are linked to the formation of cataracts,and the construction of a transgenic mouse model of cataract similar to the selection of human lens clouding due to a variety of causes has become an important means of studying the pathogenesis of cataract.Therefore,the research on the application of transgenic mice to the molecular pathogenesis of cataracts will be the main topic of this review of the literature. 展开更多
关键词 transgenic mice CATARACT LENS
下载PDF
Molecular cloning and functional analysis of the pepper resistance gene Me3 to root-knot nematode 被引量:3
9
作者 Yang Liu Hongyi Cao +5 位作者 Jian Ling Yuhong Yang Yan Li Bingyan Xie Jianlong Zhao Zhenchuan Mao 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第1期133-144,共12页
Root-knot nematodes(RKNs)cause severe diseases in peppers annually around the world.In pepper,the Me3 gene provides a heat-stable and broad-spectrum resistance to RKNs.In this study,several simple sequence repeat(SSR)... Root-knot nematodes(RKNs)cause severe diseases in peppers annually around the world.In pepper,the Me3 gene provides a heat-stable and broad-spectrum resistance to RKNs.In this study,several simple sequence repeat(SSR)markers and insertion/deletion(In Del)markers were developed to fine map the Me3 gene.Analysis of 2272 individuals(F2progenies)revealed that Me3 was located in a 45-kb DNA region between markers SSR784 and SSR339,in which there were three candidate genes.Among them,as a novel nucleotide binding site and leucine rich repeat(NBS-LRR)family gene,the DNA sequence of Capana09g000163 of pepper line‘HDA149’was 6348 bp in length,with a 2802-bp open reading frame encoding 933 amino acids,including NB-ARC and LRR domains.Tobacco transient expression assays demonstrated that expression of Capana09g000163 triggered a hypersensitive response(HR)in Nicotiana benthamiana leaves.Subcellular localization results showed that the Capana09g000163 protein was localized in the cell nucleus.Ectopic expression of Capana09g000163 in Arabidopsis significantly increased resistance against Meloidogyne incognita compared with the wild-type(WT)Arabidopsis.Furthermore,M.incognita was almost unable to develop in transgenic Arabidopsis expressing Capana09g000163.Taken together,we cloned the Me3 gene and verified that it induced resistance against M.incognita with the methods of map-based cloning and transgenic technology,which may be of great significance to pepper breeding for resistance against RKNs. 展开更多
关键词 Capsicum annuum L Meloidogyne incognita Nematode-resistant gene Fine mapping Transgenic technology
下载PDF
Characterization of transgenic wheat lines expressing maize ABP7 involved in kernel development 被引量:1
10
作者 Zaid CHACHAR Siffat Ullah KHAN +3 位作者 ZHANG Xu-huan LENG Peng-fei ZONG Na ZHAO Jun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第2期389-399,共11页
Wheat is one of the major food crops in the world.Functional validation of the genes in increasing the grain yield of wheat by genetic engineering is essential for feeding the ever-growing global population.This study... Wheat is one of the major food crops in the world.Functional validation of the genes in increasing the grain yield of wheat by genetic engineering is essential for feeding the ever-growing global population.This study investigated the role of ABP7,a bHLH transcription factor from maize involved in kernel development,in regulating grain yield-related traits in transgenic wheat.Molecular characterization showed that transgenic lines HB123 and HB287 contained multicopy integration of ABP7 in the genome with higher transgene expression.At the same time,QB205 was a transgenic event of single copy insertion with no significant difference in ABP7 expression compared to wild-type(WT) plants.Phenotyping under field conditions showed that ABP7 over-expressing transgenic lines HB123 and HB287 exhibited improved grain yield-related traits(e.g.,grain number per spike,grain weight per spike,thousand-grain weight,grain length,and grain width) and increased grain yield per plot,compared to WT plants,whereas line QB205 did not.In addition,total chlorophyll,chlorophyll a,chlorophyll b,and total soluble sugars were largely increased in the flag leaves of both HB123and HB287 transgenic lines compared to the WT.These results strongly suggest that ABP7 positively regulates yieldrelated traits and plot grain yield in transgenic wheat.Consequently,ABP7 can be utilized in wheat breeding for grain yield improvement. 展开更多
关键词 transgenic wheat ABP7 kernel development grain weight grain width
下载PDF
Characterization of genetic humanized mice with transgenic HLA DP401 or DRA but deficient in endogenous murine MHC classⅡgenes upon Staphylococcus aureus pneumonia 被引量:1
11
作者 Feng Li Bowen Niu +7 位作者 Lingling Liu Mengmin Zhu Hua Yang Boyin Qin Xiuhua Peng Lixiang Chen Chunhua Xu Xiaohui Zhou 《Animal Models and Experimental Medicine》 CAS CSCD 2023年第6期585-597,共13页
Background:Staphylococcus aureus can cause serious infections by secreting many superantigen exotoxins in“carrier”or“pathogenic”states.HLA DQ and HLA DR humanized mice have been used as a small animal model to stu... Background:Staphylococcus aureus can cause serious infections by secreting many superantigen exotoxins in“carrier”or“pathogenic”states.HLA DQ and HLA DR humanized mice have been used as a small animal model to study the role of two molecules during S.aureus infection.However,the contribution of HLA DP to S.aureus infection is unknown yet.Methods:In this study,we have produced HLA DP401 and HLA DRA0101 humanized mice by microinjection of C57BL/6J zygotes.Neo-floxed IAβ+/-mice were crossbred with Ella-Cre and further crossbred with HLA DP401 or HLA-DRA0101 humanized mice.After several rounds of traditional crossbreeding,we finally obtained HLA DP401-IAβ-/-and HLA DRA-IAβ-/-humanized mice,in which human DP401 or DRA0101 molecule was introduced into IAβ-/-mice deficient in endogenous murine MHC classⅡmolecules.A transnasal infection murine model of S.aureus pneumonia was induced in the humanized mice by administering 2×108CFU of S.aureus Newman dropwise into the nasal cavity.The immune responses and histopathology changes were further assessed in lungs in these infected mice.Results:We evaluated the local and systemic effects of S.aureus delivered intranasally in HLA DP401-IAβ-/-and HLA DRA-IAβ-/-transgenic mice.S.aureus Newman infection significantly increased the m RNA level of IL 12p40 in lungs in humanized mice.An increase in IFN-γand IL-6 protein was observed in HLA DRA-IAβ-/-mice.We observed a declining trend in the percentage of F4/80+macrophages in lungs in HLA DP401-IAβ-/-mice and a decreasing ratio of CD4+to CD8+T cells in lungs in IAβ-/-mice and HLA DP401-IAβ-/-mice.A decreasing ratio of Vβ3+to Vβ8+T cells was also found in the lymph node of IAβ-/-mice and HLA DP401-IAβ-/-mice.S.aureus Newman infection resulted in a weaker pathological injury in lungs in IAβ-/-genetic background mice.Conclusion:These humanized mice will be an invaluable mouse model to resolve the pathological mechanism of S.aureus pneumonia and study what role DP molecule plays in S.aureus infection. 展开更多
关键词 HLA DP401 HLA-DRA humanized mice MHC II Staphylococcus aureus pneumonia TRANSGENE
下载PDF
Inhibiting 5-hydroxytryptamine receptor 3 alleviates pathological changes of a mouse model of Alzheimer's disease 被引量:1
12
作者 Li-Fen Liu Yu-Tong Liu +5 位作者 Dan-Dan Wu Jie Cheng Na-Na Li Ya-Ni Zheng Liang Huang Qiong-Lan Yuan 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第9期2019-2028,共10页
Extracellular amyloid beta(Aβ) plaques are main pathological feature of Alzheimer’s disease.However,the specific type of neuro ns that produce Aβ peptides in the initial stage of Alzheimer’s disease are unknown.In... Extracellular amyloid beta(Aβ) plaques are main pathological feature of Alzheimer’s disease.However,the specific type of neuro ns that produce Aβ peptides in the initial stage of Alzheimer’s disease are unknown.In this study,we found that 5-hydroxytryptamin receptor 3A subunit(HTR3A) was highly expressed in the brain tissue of transgenic amyloid precursor protein and presenilin-1 mice(an Alzheimer’s disease model) and patients with Alzheimer’s disease.To investigate whether HTR3A-positive interneurons are associated with the production of Aβ plaques,we performed double immunostaining and found that HTR3A-positive interneurons were clustered around Aβ plaques in the mouse model.Some amyloid precursor protein-positive or β-site amyloid precursor protein cleaving enzyme-1-positive neurites near Aβ plaques were co-localized with HTR3A interneurons.These results suggest that HTR3A-positive interneurons may partially contribute to the generation of Aβ peptides.We treated 5.0-5.5-month-old model mice with tro pisetron,a HTR3 antagonist,for 8 consecutive weeks.We found that the cognitive deficit of mice was partially reversed,Aβ plaques and neuroinflammation we re remarkably reduced,the expression of HTR3 was remarkably decreased and the calcineurin/nuclear factor of activated T-cell 4 signaling pathway was inhibited in treated model mice.These findings suggest that HTR3A interneurons partly contribute to generation of Aβ peptide at the initial stage of Alzheimer’s disease and inhibiting HTR3 partly reve rses the pathological changes of Alzheimer’s disease. 展开更多
关键词 5-hydroxytryptamin receptor 3 Alzheimer’s disease amyloid beta plaques CALCINEURIN cognitive deficits HTR3 interneurons iCa2+ nuclear factor of activated T-cells transgenic amyloid precursor protein and presenilin-1 mice TROPISETRON
下载PDF
Lung-Targeted Transgene Expression of Nanocomplexed Ad5 Enhances Immune Response in the Presence of Preexisting Immunity
13
作者 Yilong Yang Shipo Wu +10 位作者 Yudong Wang Fangze Shao Peng Lv Ruihua Li Xiaofan Zhao Jun Zhang Xiaopeng Zhang Jianmin Li Lihua Hou Junjie Xu Wei Chen 《Engineering》 SCIE EI CAS CSCD 2023年第8期127-139,共13页
Recombinant adenovirus serotype 5(Ad5)vector has been widely applied in vaccine development targeting infectious diseases,such as Ebola virus disease and coronavirus disease 2019(COVID-19).However,the high prevalence ... Recombinant adenovirus serotype 5(Ad5)vector has been widely applied in vaccine development targeting infectious diseases,such as Ebola virus disease and coronavirus disease 2019(COVID-19).However,the high prevalence of preexisting anti-vector immunity compromises the immunogenicity of Ad5-based vaccines.Thus,there is a substantial unmet need to minimize preexisting immunity while improving the insert-induced immunity of Ad5 vectors.Herein,we address this need by utilizing biocompatible nanoparticles to modulate Ad5–host interactions.We show that positively charged human serum albumin nanoparticles((+)HSAnp),which are capable of forming a complex with Ad5,significantly increase the transgene expression of Ad5 in both coxsackievirus–adenovirus receptor-positive and-negative cells.Furthermore,in charge-and dose-dependent manners,Ad5/(+)HSAnp complexes achieve robust(up to227-fold higher)and long-term(up to 60 days)transgene expression in the lungs of mice following intranasal instillation.Importantly,in the presence of preexisting anti-Ad5 immunity,complexed Ad5-based Ebola and COVID-19 vaccines significantly enhance antigen-specific humoral response and mucosal immunity.These findings suggest that viral aggregation and charge modification could be leveraged to engineer enhanced viral vectors for vaccines and gene therapies. 展开更多
关键词 Adenovirus serotype 5 VACCINE Preexisting immunity Nanoparticles Transgene expression
下载PDF
See the color,see the seed:GmW1 as a visual reporter for transgene and genome editing in soybean
14
作者 Li Chen Shan Yuan +5 位作者 Yupeng Cai Weiwei Yao Qiang Su Yingying Chen Jialing Zhang Wensheng Hou 《The Crop Journal》 SCIE CSCD 2023年第1期311-315,共5页
A fast and efficient recognition method of transgenic lines will greatly improve detection efficiency and reduce cost.In this study,we successfully identified the transgenic soybean plants by the color.We isolated a G... A fast and efficient recognition method of transgenic lines will greatly improve detection efficiency and reduce cost.In this study,we successfully identified the transgenic soybean plants by the color.We isolated a GmW1 gene encoding a flavonoid 3'5'-hydroxylase from a soybean cultivar ZH42(purple flower).We found that purple flowers occurred in the overexpression lines in the Jack and Williams 82 backgrounds(white flower).All plants with purple flowers were positive,and this trait seems stably inherited in the offspring.We have also obtained the editing plants,which were classified into three types according to the different flower colors appeared.We analyzed the phenotype and the homozygous types of the T_1mutants.We also found that a correspondence between flower color and stem color.This study provides a visible color reporter on soybean transformation.It can be quickly and early to identify the transgenic soybean plants by stem color of seedlings,which substantially reduces the amount of labor and cost. 展开更多
关键词 SOYBEAN GmW1 COLOR Transgenic lines Genome editing
下载PDF
Novel flavin-containing monooxygenase protein FMO1 interacts with CAT2 to negatively regulate drought tolerance through ROS homeostasis and ABA signaling pathway in tomato
15
作者 Lulu Wang Yinlian Zhou +6 位作者 Yin Ding Chunrui Chen Xueting Chen Nini Su Xingguo Zhang Yu Pan Jinhua Li 《Horticulture Research》 SCIE CSCD 2023年第4期225-237,共13页
Drought stress is themajor abiotic factor that can seriously affect plant growth and crop production.The functions of flavin-containing monooxygenases(FMOs)are known in animals.They addmolecular oxygen to lipophilic c... Drought stress is themajor abiotic factor that can seriously affect plant growth and crop production.The functions of flavin-containing monooxygenases(FMOs)are known in animals.They addmolecular oxygen to lipophilic compounds or produce reactive oxygen species(ROS).However,little information on FMOs in plants is available.Here,we characterized a tomato drought-responsive gene that showed homology to FMO,and it was designated as FMO1.FMO1 was downregulated promptly by drought and ABA treatments.Transgenic functional analysis indicated that RNAi suppression of the expression of FMO1(FMO1-Ri)improved drought tolerance relative to wild-type(WT)plants,whereas overexpression of FMO1(FMO1-OE)reduced drought tolerance.The FMO1-Ri plants exhibited lower ABA accumulation,higher levels of antioxidant enzyme activities,and less ROS generation comparedwith theWTand FMO1-OE plants under drought stress.RNA-seq transcriptional analysis revealed the differential expression levels of many drought-responsive genes thatwere co-expressed with FMO1,including PP2Cs,PYLs,WRKY,and LEA.Using Y2H screening,we found that FMO1 physically interacted with catalase 2(CAT2),which is an antioxidant enzyme and confers drought resistance.Our findings suggest that tomato FMO1 negatively regulates tomato drought tolerance in the ABA-dependent pathway and modulates ROS homeostasis by directly binding to SlCAT2. 展开更多
关键词 mono drought TRANSGENIC
下载PDF
A bioartificial transgenic porcine whole liver expressing human proteins alleviates acute liver failure in pigs
16
作者 Wei-Song Xue Hao-Jie Zhang +5 位作者 Jing-Jing Ke Yu Fu Qing Peng Li Li Yi Gao Ke-Bo Zhong 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2023年第3期270-281,共12页
Background:Preventing heterologous protein influx in patients is important when using xenogeneic bioartificial livers(BALs)to treat liver failure.The development of transgenic porcine livers synthesizing human protein... Background:Preventing heterologous protein influx in patients is important when using xenogeneic bioartificial livers(BALs)to treat liver failure.The development of transgenic porcine livers synthesizing human proteins is a promising approach in this regard.Here,we evaluated the safety and efficacy of a transgenic porcine liver synthesizing human albumin(h ALB)and coagulation factor VII(h FVII)within a bioartificial system.Methods:Tibetan miniature pigs were randomly subjected to different interventions after surgeryinduced partially ischemic liver failure.Group A(n=4)was subjected to basic treatment;group B(n=4)was to standard medical treatment and wild-type porcine BAL perfusion,and group C(n=2)was to standard medical treatment and transgenic BAL perfusion.Biochemical parameters,coagulation status,survival time,and pathological changes were determined.Expressions of h ALB and h FVII were detected using immunohistochemistry and enzyme-linked immunosorbent assays.Results:The survival time in group A was 9.75±1.26 days;this was shorter than that in both perfused groups,in which all animals reached an endpoint of 12 days(P=0.006).Ammonia,bilirubin,and lactate levels were significantly decreased,whereas albumin and fibrinogen levels were increased after perfusion(all P<0.05).h ALB and h FVII were detected in transgenic BAL-perfused pig serum and ex vivo in the liver tissues.Conclusions:The humanized transgenic pig livers could synthesize and secrete h ALB and h FVII ex vivo in a whole organ-based bioartificial system,while maintaining their metabolism,detoxification,transformation,and excretion functions,which were comparable to those observed in wild-type porcine livers.Therefore,the use of transgenic bioartificial whole livers is expected to become a new approach in treating acute liver failure. 展开更多
关键词 Acute liver failure Transgenic pig Bioartificial liver XENOTRANSPLANTATION
下载PDF
Production of marker-free transgenic plants from mature tissues of navel orange using a Cre/loxP site-recombination system
17
作者 Yongrui He Lanzhen Xu +7 位作者 Aihong Peng Tiangang Lei Qiang Li Lixiao Yao Guojin Jiang Shanchun Chen Zhengguo Li Xiuping Zou 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第3期473-480,共8页
Genetic transformation with mature material as the explants could shorten the transgenic period and avoid seed dependence compared with genetic transformation using the epicotyl seedling stem segments as the receptor.... Genetic transformation with mature material as the explants could shorten the transgenic period and avoid seed dependence compared with genetic transformation using the epicotyl seedling stem segments as the receptor. Here, we constructed an Agrobacterium tumefaciensmediated transformation for generation of marker-free transgenic plants from navel orange(Citrus sinensis Osbeck) mature stems using a CreloxP recombination system. To efficiently recover the regenerated buds from mature tissues, five recovery methods were compared: in vitro micrografting of 0.1-0.5(1-2 weeks), > 0.5 cm(3-4 weeks) and > 1 cm long lignified bud and in vitro micrografting of explants with a bud and rooting regenerated bud. The data showed that in vitro micrografting of > 1 cm long regenerated bud with expanded leaves after one month of continuous culture for lignification was the optimal solution for plant recovery from mature tissues. Transgenic plants without selectable marker genes were created from navel orange(Citrus sinensis Osbeck) tissue using a transformation vector PLI-35SPR1aCB containing a Cre/loxP system recombination together with genes encoding the selectable marker isopentenyl transferase(IPT) and an anti-bacterial peptide(PR1aCB).Using IPT positive selection, the transformation efficiency determined by PCR was 0.9%, and in total, 20 transgenic plants were obtained.Southern blotting confirmed further their transgenicity. PCR and sequencing analysis demonstrated that both the Cre and IPT genes had been successfully removed from the transgenic plants(deletion efficiency 100%). Over all, using Cre/loxP system recombination together with the IPT positive selection, marker-free transgenic plants can be recovered efficiently from mature tissues of navel orange(Citrus sinensis Osbeck), which provides a potential method for production of transgenic plants from citrus mature tissue. 展开更多
关键词 Citrus sinensis Osbeck Mature stem segment MARKER-FREE TRANSGENE Bud micrografting
下载PDF
Chickpea C2H2-Type Zinc Finger Protein ZF2 is a Positive Regulator in Drought Response in Arabidopsis
18
作者 Sushuang Liu Yanmin Liu +2 位作者 Chundong Liu Xingwang Yu Hao Ma 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第2期577-590,共14页
Drought is a major abiotic stress limiting agricultural crops production worldwide.In our study,we isolated a novel C2H2-type zinc finger protein gene ZF2 from chickpea.ZF2 consisted of 232 amino acids with two QALGGH... Drought is a major abiotic stress limiting agricultural crops production worldwide.In our study,we isolated a novel C2H2-type zinc finger protein gene ZF2 from chickpea.ZF2 consisted of 232 amino acids with two QALGGH motifs in Cys2/His2 zinc finger domain.Transient expression analysis of ZF2:GFP fusion protein showed that ZF2 was a nuclear localized protein.In the yeast assay system,the full-length of ZF2 did not show transcriptional activation.Expression of ZF2 gene was enhanced by treatments of several abiotic stresses and phytohormones.The promoter region of ZF2 contained multiple stress-and hormone-related cis-elements.Overexpression of ZF2 in Arabidopsis significantly improved the root length and fresh weight at seedling stage and enhanced the survival rates and proline content under drought treatment.These results indicated that ZF2 functioned as a positive regulator in drought response. 展开更多
关键词 ZF2 CHICKPEA drought tolerance TRANSGENIC
下载PDF
CopE and TLR6 RNAi-mediated tomato resistance to western flower thrips
19
作者 Jelli VENKATESH Sung Jin KIM +3 位作者 Muhammad Irfan SIDDIQUE Ju Hyeon KIM Si Hyeock LEE Byoung-Cheorl KANG 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第2期471-480,共10页
The western flower thrips(WFT;Frankliniella occidentalis)is a mesophyll cell feeder that damages many crops.Management of WFT is complex due to factors such as high fecundity,short reproduction time,ability to feed on... The western flower thrips(WFT;Frankliniella occidentalis)is a mesophyll cell feeder that damages many crops.Management of WFT is complex due to factors such as high fecundity,short reproduction time,ability to feed on a broad range of host plants,and broad pesticide resistance.These challenges have driven research into developing alternative pest control approaches for WFT.This study analyzed the feasibility of a biological control-based strategy to manage WFT using RNA interference(RNAi)-mediated silencing of WFT endogenous genes.For the delivery of RNAi,we developed transgenic tomato lines expressing double-stranded RNA(dsRNA)of coatomer protein subunit epsilon(CopE)and Toll-like receptor 6(TLR6)from WFT.These genes are involved in critical biological processes of WFT,and their dsRNA can be lethal to these insects when ingested orally.Adult WFT that fed on the transgenic dsRNAexpressing tomato flower stalk showed increased mortality compared with insects that fed on wild-type samples.In addition,WFT that fed on TLR6 and CopE transgenic tomato RNAi lines showed reduced levels of endogenous CopE and TLR6 transcripts,suggesting that their mortality was likely due to RNAi-mediated silencing of these genes.Thus,our findings demonstrate that transgenic tomato plants expressing dsRNA of TLR6 and CopE can be lethal to F.occidentalis,suggesting that these genes may be deployed to control insecticide-resistant WFT. 展开更多
关键词 coatomer protein subunit epsilon(CopE) Frankliniella occidentalis insect resistance RNA interference Toll-like receptor 6(TLR6) TOMATO TRANSGENICS
下载PDF
Cloning and Functional Validation of Mung Bean VrPR Gene
20
作者 Xiaokui Huang Yingbin Xue +3 位作者 Aaqil Khan Hanqiao Hu Naijie Feng Dianfeng Zheng 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第8期2369-2382,共14页
For the purpose of functional validation,the mung bean(Vigna radiata)VrPR gene was cloned and overexpressed in Arabidopsis thaliana.Thefindings revealed that the ORF of VrPR contained 1200 bp,in which 399 amino acids w... For the purpose of functional validation,the mung bean(Vigna radiata)VrPR gene was cloned and overexpressed in Arabidopsis thaliana.Thefindings revealed that the ORF of VrPR contained 1200 bp,in which 399 amino acids were encoded.Bioinformatics analysis showed that the VrPR protein belonged to the NADB Rossmann superfamily,which was one of the non-transmembrane hydrophilic proteins.VrPR was assumed to have 44 amino acid phosphorylation sites and be contained in chloroplasts.The VrPR secondary structure comprised of random coil,αhelix,βangle,and extended chain,all of which were quite compatible with the anticipated tertiary structure.Moreover,analysis of the phylogenetic tree indicated that the soybean PR(Glyma.12G222200)and VrPR were closely related.Furthermore,chlorophyll content in leaves is markedly increased in Arabidopsis when VrPR is overexpressed.Ourfindings will serve as a reference for more functional studies on the PR genes in mung bean. 展开更多
关键词 Mung bean gene cloning VrPR transgenic arabidopsis functional verification
下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部