Extensive planting of Bacillus thuringiensis (Bt)-transgenic plants economically benefits society; how-ever, the potential risk they pose is receiving increasing attention. This study used enzyme-linked immunosorben...Extensive planting of Bacillus thuringiensis (Bt)-transgenic plants economically benefits society; how-ever, the potential risk they pose is receiving increasing attention. This study used enzyme-linked immunosorbent assay and fluorescence quantitative PCR (RT-PCR) to monitor the temporal and spatial dynamics of the expression of Bt toxic protein in a forest of 6- to 8-year-old trees of transgenic insect-resistant poplar 741 for three consec- utive years. The enrichment, distribution, and degradation of Bt toxic protein and the influence of transgenic poplars on the targeted insect population, Hyphantria cunea, were investigated. The content of CrylAc toxic protein dynamically changed in transgenic poplar. During the annual growth cycle, the content initially increased, then decreased in the long and the short branches of the crown and in the root system, peaking in August. During the study, the protein did not accumulate overtime. The mRNA transcription of gene CrylAc was almost consistent with the level of the protein, but transcription peaked in July. In the transgenic and control forestland, microscale levels of the CrylAc toxic protein were detected from the soil, but increased accumulation was not observed with the planting year of transgenic poplar. Meanwhile, Bt was isolated and detected molecularly from the soil in the experimental forestland. A systematic investigation of the density of H. cunea in the experimental transgenic poplar forest indi- cated that transgenic Pb29 poplar could resist insects to a certain degree. At peak occurrence of the targeted insects, the density of H. cunea in the experimental forest was significantly lower than in the nontransgenic poplar forest.展开更多
以2个转BtCry1Ac基因107杨株系及其未转基因对照为材料,研究转Bt基因107杨的根系分布特征。结果表明:1)垂直方向上,2个转基因株系与CK的总根系及各径级根长密度、表面积密度、体积密度以及生物量密度上均随土层深度的增加而显著降低,在0...以2个转BtCry1Ac基因107杨株系及其未转基因对照为材料,研究转Bt基因107杨的根系分布特征。结果表明:1)垂直方向上,2个转基因株系与CK的总根系及各径级根长密度、表面积密度、体积密度以及生物量密度上均随土层深度的增加而显著降低,在0~30 cm土层中,根长密度、根表面积密度、根体积密度及生物量密度均达到最大值,且显著高于其他土层;2)水平方向0~150 cm, 2个转基因株系与CK的总根表面积密度、总生物量密度随着距树干水平距离的增加呈现出先减小后增大的趋势;不同径级根系表面积密度、根长密度在距树干0~30 cm处达到最大值;3)2个转基因株系总根长密度、根表面积密度、根体积密度和生物量密度均小于对照,对照与转基因株系存在显著性差异,而2个转基因株系间无显著性差异;4)3个株系在根系分布中均以细根为主,且转基因株系细根径级的根长密度、根表面积密度表现为对照大于转基因株系且存在显著性差异,对照和转基因株系中根与粗根根长密度、根表面积密度无显著性差异。展开更多
基金supported by the National High Technology Research and Development Program of China(863 Program)(Grant No.2013AA102703)
文摘Extensive planting of Bacillus thuringiensis (Bt)-transgenic plants economically benefits society; how-ever, the potential risk they pose is receiving increasing attention. This study used enzyme-linked immunosorbent assay and fluorescence quantitative PCR (RT-PCR) to monitor the temporal and spatial dynamics of the expression of Bt toxic protein in a forest of 6- to 8-year-old trees of transgenic insect-resistant poplar 741 for three consec- utive years. The enrichment, distribution, and degradation of Bt toxic protein and the influence of transgenic poplars on the targeted insect population, Hyphantria cunea, were investigated. The content of CrylAc toxic protein dynamically changed in transgenic poplar. During the annual growth cycle, the content initially increased, then decreased in the long and the short branches of the crown and in the root system, peaking in August. During the study, the protein did not accumulate overtime. The mRNA transcription of gene CrylAc was almost consistent with the level of the protein, but transcription peaked in July. In the transgenic and control forestland, microscale levels of the CrylAc toxic protein were detected from the soil, but increased accumulation was not observed with the planting year of transgenic poplar. Meanwhile, Bt was isolated and detected molecularly from the soil in the experimental forestland. A systematic investigation of the density of H. cunea in the experimental transgenic poplar forest indi- cated that transgenic Pb29 poplar could resist insects to a certain degree. At peak occurrence of the targeted insects, the density of H. cunea in the experimental forest was significantly lower than in the nontransgenic poplar forest.
文摘以2个转BtCry1Ac基因107杨株系及其未转基因对照为材料,研究转Bt基因107杨的根系分布特征。结果表明:1)垂直方向上,2个转基因株系与CK的总根系及各径级根长密度、表面积密度、体积密度以及生物量密度上均随土层深度的增加而显著降低,在0~30 cm土层中,根长密度、根表面积密度、根体积密度及生物量密度均达到最大值,且显著高于其他土层;2)水平方向0~150 cm, 2个转基因株系与CK的总根表面积密度、总生物量密度随着距树干水平距离的增加呈现出先减小后增大的趋势;不同径级根系表面积密度、根长密度在距树干0~30 cm处达到最大值;3)2个转基因株系总根长密度、根表面积密度、根体积密度和生物量密度均小于对照,对照与转基因株系存在显著性差异,而2个转基因株系间无显著性差异;4)3个株系在根系分布中均以细根为主,且转基因株系细根径级的根长密度、根表面积密度表现为对照大于转基因株系且存在显著性差异,对照和转基因株系中根与粗根根长密度、根表面积密度无显著性差异。