Two floating structures in close proximity are very commonly seen in offshore engineering. They are often subjected to steep waves and, therefore, the transient effects on their hydrodynamic features are of great conc...Two floating structures in close proximity are very commonly seen in offshore engineering. They are often subjected to steep waves and, therefore, the transient effects on their hydrodynamic features are of great concem. This paper uses the quasi arbitrary Lagrangian Eulerian finite element method (QALE-FEM), based on the fully nonlinear potential theory (FNPT), to numerically investigate the interaction between two 3-D floating structures, which undergo motions with 6 degrees of freedom (DOFs), and are subjected to waves with different incident angles. The transient behaviours of floating structures, the effect of the accompanied structures, and the nonlinearity on the motion of and the wave loads on the structures are the main focuses of the study. The investigation reveals an important transient effects causing considerably larger structure motion than that in steady state. The results also indicate that the accompanied structure in close proximity enhances the interaction between different motion modes and results in stronger nonlinearity causing 2hal-order component to be of similar significance to the fundamental one.展开更多
Transient aerodynamic characteristics of airfoil are important for the safety of airplanes, the development of helicopter rotors and many other applications of unsteady aerodynamics. For a better understanding of thes...Transient aerodynamic characteristics of airfoil are important for the safety of airplanes, the development of helicopter rotors and many other applications of unsteady aerodynamics. For a better understanding of these phenomena, it is necessary to investigate the simultaneous relation between the characteristics and the flow field. The purpose of the present study is to clarify experimentally the fundamentals of the aerodynamic behaviours associated with stepwise incidence variations from 0 to some certain values, including high angles of attack, of symmetric airfoils at low speeds, Reynolds number being of the order of 104. Temporal variations of surface pressure distribution, lift, drag and . pitching moment, and the observation of the flow field will be discussed.展开更多
The transient current behaviour for Iron in 3.5%NaCl and 3.5%NaCl +1%NaNO2 solutions during corrosion fatigue (CF) process has been investigated at different given strain amplitudes and strain rates. The results show ...The transient current behaviour for Iron in 3.5%NaCl and 3.5%NaCl +1%NaNO2 solutions during corrosion fatigue (CF) process has been investigated at different given strain amplitudes and strain rates. The results show that elastic strain has little contribution to material dissolution. The elastic tension strain results in the decrease in the transient current, while the elastic compression strain increases the transient current. Compared to the elastic deformation, plastic deformation affects material dissolution evidently For iron in 3.5%NaCl solution, the strain amplitude plays a dominant role in the dissolution process accelerated by the plastic strain, while in 3.5%NaCl+1%NaNO2 solution, both the strain amplitude and strain rate play an important role in this process. In this paper, the effect of the elastic deformation on the material dissolution and the relation between the tension and compression current peak values under the plastic cycle deformation are discussed展开更多
This paper presents a new smooth memristor oscillator, which is derived from Chua's oscillator by replacing Chua's diode with a flux-controlled memristor and a negative conductance. Novel parameters and initial cond...This paper presents a new smooth memristor oscillator, which is derived from Chua's oscillator by replacing Chua's diode with a flux-controlled memristor and a negative conductance. Novel parameters and initial conditions are dependent upon dynamical behaviours such as transient chaos and stable chaos with an intermittence period and are found in the smooth memristor oscillator. By using dynamical analysis approaches including time series, phase portraits and bifurcation diagrams, the dynamical behaviours of the proposed memristor oscillator are effectively investigated in this paper.展开更多
以A型行为问卷对210名高血压病人和203名正常对照组进行了测试。发现在≥56岁的高血压病人中,问卷得分显著高于同龄对照组。伴有短暂脑缺血发作的病人,其 A 型行为类型的比例又显著高于无此并发症的病人相对照组。在行为因子中,时间紧...以A型行为问卷对210名高血压病人和203名正常对照组进行了测试。发现在≥56岁的高血压病人中,问卷得分显著高于同龄对照组。伴有短暂脑缺血发作的病人,其 A 型行为类型的比例又显著高于无此并发症的病人相对照组。在行为因子中,时间紧迫感、争强好胜、易激惹是老年人高血压最突出的靶行为。展开更多
The positive thermal gradient is one of the most important parameters during directional solidification. The increase of the thermal gradient usually stabilizes the planar interface in the steady state analysis. Howev...The positive thermal gradient is one of the most important parameters during directional solidification. The increase of the thermal gradient usually stabilizes the planar interface in the steady state analysis. However, in the initial transient range of planar instability, the thermal gradient presents complicated effects. Time-dependent analysis shows that the increase of the thermal gradient can enhance both the stabilizing effects and the destabilizing effects on a planar interface. The incubation time first decreases and then increases with the increase of the thermal gradient. Moreover, the initial average wavelength always increases with the thermal gradient increasing, contrary to the effect of the thermal gradient on the steady cellular/dendritic spacing. This reveals the types of spacing adjustment after planar instability.展开更多
This paper investigates the use of the method of inequalities (MoI) to design output-feedback compensators for the problem of the control of instabilities in a laminar plane Poiseuille flow. In common with many flow...This paper investigates the use of the method of inequalities (MoI) to design output-feedback compensators for the problem of the control of instabilities in a laminar plane Poiseuille flow. In common with many flows, the dynamics of streamwise vortices in plane Poiseuille flow are very non-normal. Consequently, small perturbations grow rapidly with a large transient that may trigger nonlinearities and lead to turbulence even though such perturbations would, in a linear flow model, eventually decay. Such a system can be described as a conditionally linear system. The sensitivity is measured using the maximum transient energy growth, which is widely used in the fluid dynamics community. The paper considers two approaches. In the first approach, the MoI is used to design low-order proportional and proportional-integral (PI) controllers. In the second one, the MoI is combined with McFarlane and Glover's H∞ loop-shaping design procedure in a mixed-optimization approach.展开更多
The transient tribological phenomenon and premature lubricant breakdown have been widely observed in metal forming,leading to excessive friction at the contact interfaces.In this research,the transient tribological be...The transient tribological phenomenon and premature lubricant breakdown have been widely observed in metal forming,leading to excessive friction at the contact interfaces.In this research,the transient tribological behaviour of a two-phase lubricant were studied under complex loading conditions,featuring abrupt interfacial temperature,contact load,and sliding speed changes,thus representing the severe interfacial conditions observed in warm/hot metal forming applications.The strong experimental evidence indicates that the evolution of friction was attributed to the physical diminution and chemical decomposition effects.As such,a visco-mechanochemical interactive friction model was developed to accurately predict the transient tribological behaviour of the two-phase lubricant under complex loading conditions.The new friction model exhibited close agreements between the modelling and experimental results.展开更多
基金Supported by EPSRC/FSC (EP/I502033/1) and Leverhulme Trust (ECF/40348), UK
文摘Two floating structures in close proximity are very commonly seen in offshore engineering. They are often subjected to steep waves and, therefore, the transient effects on their hydrodynamic features are of great concem. This paper uses the quasi arbitrary Lagrangian Eulerian finite element method (QALE-FEM), based on the fully nonlinear potential theory (FNPT), to numerically investigate the interaction between two 3-D floating structures, which undergo motions with 6 degrees of freedom (DOFs), and are subjected to waves with different incident angles. The transient behaviours of floating structures, the effect of the accompanied structures, and the nonlinearity on the motion of and the wave loads on the structures are the main focuses of the study. The investigation reveals an important transient effects causing considerably larger structure motion than that in steady state. The results also indicate that the accompanied structure in close proximity enhances the interaction between different motion modes and results in stronger nonlinearity causing 2hal-order component to be of similar significance to the fundamental one.
文摘Transient aerodynamic characteristics of airfoil are important for the safety of airplanes, the development of helicopter rotors and many other applications of unsteady aerodynamics. For a better understanding of these phenomena, it is necessary to investigate the simultaneous relation between the characteristics and the flow field. The purpose of the present study is to clarify experimentally the fundamentals of the aerodynamic behaviours associated with stepwise incidence variations from 0 to some certain values, including high angles of attack, of symmetric airfoils at low speeds, Reynolds number being of the order of 104. Temporal variations of surface pressure distribution, lift, drag and . pitching moment, and the observation of the flow field will be discussed.
文摘The transient current behaviour for Iron in 3.5%NaCl and 3.5%NaCl +1%NaNO2 solutions during corrosion fatigue (CF) process has been investigated at different given strain amplitudes and strain rates. The results show that elastic strain has little contribution to material dissolution. The elastic tension strain results in the decrease in the transient current, while the elastic compression strain increases the transient current. Compared to the elastic deformation, plastic deformation affects material dissolution evidently For iron in 3.5%NaCl solution, the strain amplitude plays a dominant role in the dissolution process accelerated by the plastic strain, while in 3.5%NaCl+1%NaNO2 solution, both the strain amplitude and strain rate play an important role in this process. In this paper, the effect of the elastic deformation on the material dissolution and the relation between the tension and compression current peak values under the plastic cycle deformation are discussed
基金Project supported by the National Natural Science Foundation of China (Grant No. 60971090)the Natural Science Foundations of Jiangsu Province,China (Grant No. BK2009105)
文摘This paper presents a new smooth memristor oscillator, which is derived from Chua's oscillator by replacing Chua's diode with a flux-controlled memristor and a negative conductance. Novel parameters and initial conditions are dependent upon dynamical behaviours such as transient chaos and stable chaos with an intermittence period and are found in the smooth memristor oscillator. By using dynamical analysis approaches including time series, phase portraits and bifurcation diagrams, the dynamical behaviours of the proposed memristor oscillator are effectively investigated in this paper.
基金supported by the National Natural Science Foundation of China (Grant No. 51071128)the Program for New Century Excellent Talents in University (Grant No. NCET-09-0683)+2 种基金the Fund of State Key Laboratory of Solidification Processing in Northwestern Polytechnical University, China (Grant Nos. 17-TZ-2007, 03-TP-2008, and 24-TZ-2009)the National Basic Research Program of China (Grant No. 2011CB610401)the China Postdoctoral Science Foundation (Grant No. 20110491689)
文摘The positive thermal gradient is one of the most important parameters during directional solidification. The increase of the thermal gradient usually stabilizes the planar interface in the steady state analysis. However, in the initial transient range of planar instability, the thermal gradient presents complicated effects. Time-dependent analysis shows that the increase of the thermal gradient can enhance both the stabilizing effects and the destabilizing effects on a planar interface. The incubation time first decreases and then increases with the increase of the thermal gradient. Moreover, the initial average wavelength always increases with the thermal gradient increasing, contrary to the effect of the thermal gradient on the steady cellular/dendritic spacing. This reveals the types of spacing adjustment after planar instability.
文摘This paper investigates the use of the method of inequalities (MoI) to design output-feedback compensators for the problem of the control of instabilities in a laminar plane Poiseuille flow. In common with many flows, the dynamics of streamwise vortices in plane Poiseuille flow are very non-normal. Consequently, small perturbations grow rapidly with a large transient that may trigger nonlinearities and lead to turbulence even though such perturbations would, in a linear flow model, eventually decay. Such a system can be described as a conditionally linear system. The sensitivity is measured using the maximum transient energy growth, which is widely used in the fluid dynamics community. The paper considers two approaches. In the first approach, the MoI is used to design low-order proportional and proportional-integral (PI) controllers. In the second one, the MoI is combined with McFarlane and Glover's H∞ loop-shaping design procedure in a mixed-optimization approach.
文摘The transient tribological phenomenon and premature lubricant breakdown have been widely observed in metal forming,leading to excessive friction at the contact interfaces.In this research,the transient tribological behaviour of a two-phase lubricant were studied under complex loading conditions,featuring abrupt interfacial temperature,contact load,and sliding speed changes,thus representing the severe interfacial conditions observed in warm/hot metal forming applications.The strong experimental evidence indicates that the evolution of friction was attributed to the physical diminution and chemical decomposition effects.As such,a visco-mechanochemical interactive friction model was developed to accurately predict the transient tribological behaviour of the two-phase lubricant under complex loading conditions.The new friction model exhibited close agreements between the modelling and experimental results.