In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user syste...In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user systems to achieve the maximum energy efficiency in a cognitive network based on hybrid spectrum sharing,meanwhile considering the maximum transmit power,user quality of service(QoS)requirements,interference limitations,and primary user protection.The optimization of energy efficient sensing time and power allocation is formulated as a non-convex optimization problem.The Dinkelbach’s method is adopted to solve this problem and to transform the non-convex optimization problem in fractional form into an equivalent optimization problem in the form of subtraction.Then,an iterative power allocation algorithm is proposed to solve the optimization problem.The simulation results show the effectiveness of the proposed algorithms for energy-efficient resource allocation in the cognitive network.展开更多
In recent years, power generation using renewable energy sources has been increasing as a solution to the global warning problem. Wind power generation can generate electricity day and night, and it is relatively more...In recent years, power generation using renewable energy sources has been increasing as a solution to the global warning problem. Wind power generation can generate electricity day and night, and it is relatively more efficient among the renewable energy sources. The penetration level of variable-speed wind turbines continues to increase. The interconnected wind turbines, however, have no inertia and no synchronous power. Such devices can have a serious impact on the transient stability of the power grid system. One solution to stabilize such grid with renewable energy sources is to provide emulated inertia and synchronizing power. We have proposed an optimal design method of current control for virtual synchronous generators. This paper proposes an optimal control method that can follow the virtual generator model under constrains. As a result, it is shown that the proposed system can suppress the peak of the output of semiconductor device under instantaneous output voltage drop.展开更多
The optimal tracking performance for integrator and dead time plant in the case where plant uncertainty and control energy constraints are to be considered jointly is inrestigated. Firstly, an average cost function of...The optimal tracking performance for integrator and dead time plant in the case where plant uncertainty and control energy constraints are to be considered jointly is inrestigated. Firstly, an average cost function of the tracking error and the plant input energy over a class of stochastic model errors are defined. Then, we obtain an internal model controller design method that minimizes the average performance and further studies optimal tracking performance for integrator and dead time plant in the simultaneous presence of plant uncertainty and control energy constraint. The results can be used to evaluate optimal tracking performance and control energy in practical designs.展开更多
This paper investigates the use of the method of inequalities (MoI) to design output-feedback compensators for the problem of the control of instabilities in a laminar plane Poiseuille flow. In common with many flow...This paper investigates the use of the method of inequalities (MoI) to design output-feedback compensators for the problem of the control of instabilities in a laminar plane Poiseuille flow. In common with many flows, the dynamics of streamwise vortices in plane Poiseuille flow are very non-normal. Consequently, small perturbations grow rapidly with a large transient that may trigger nonlinearities and lead to turbulence even though such perturbations would, in a linear flow model, eventually decay. Such a system can be described as a conditionally linear system. The sensitivity is measured using the maximum transient energy growth, which is widely used in the fluid dynamics community. The paper considers two approaches. In the first approach, the MoI is used to design low-order proportional and proportional-integral (PI) controllers. In the second one, the MoI is combined with McFarlane and Glover's H∞ loop-shaping design procedure in a mixed-optimization approach.展开更多
基金supported in part by the National Natural Science Foundation of China for Young Scholars under Grant No.61701167Young Elite Backbone Teachers in Blue and Blue Project of Jiangsu Province, China
文摘In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user systems to achieve the maximum energy efficiency in a cognitive network based on hybrid spectrum sharing,meanwhile considering the maximum transmit power,user quality of service(QoS)requirements,interference limitations,and primary user protection.The optimization of energy efficient sensing time and power allocation is formulated as a non-convex optimization problem.The Dinkelbach’s method is adopted to solve this problem and to transform the non-convex optimization problem in fractional form into an equivalent optimization problem in the form of subtraction.Then,an iterative power allocation algorithm is proposed to solve the optimization problem.The simulation results show the effectiveness of the proposed algorithms for energy-efficient resource allocation in the cognitive network.
文摘In recent years, power generation using renewable energy sources has been increasing as a solution to the global warning problem. Wind power generation can generate electricity day and night, and it is relatively more efficient among the renewable energy sources. The penetration level of variable-speed wind turbines continues to increase. The interconnected wind turbines, however, have no inertia and no synchronous power. Such devices can have a serious impact on the transient stability of the power grid system. One solution to stabilize such grid with renewable energy sources is to provide emulated inertia and synchronizing power. We have proposed an optimal design method of current control for virtual synchronous generators. This paper proposes an optimal control method that can follow the virtual generator model under constrains. As a result, it is shown that the proposed system can suppress the peak of the output of semiconductor device under instantaneous output voltage drop.
基金the High Technology Research and Development (863) Program (2003AA517020).
文摘The optimal tracking performance for integrator and dead time plant in the case where plant uncertainty and control energy constraints are to be considered jointly is inrestigated. Firstly, an average cost function of the tracking error and the plant input energy over a class of stochastic model errors are defined. Then, we obtain an internal model controller design method that minimizes the average performance and further studies optimal tracking performance for integrator and dead time plant in the simultaneous presence of plant uncertainty and control energy constraint. The results can be used to evaluate optimal tracking performance and control energy in practical designs.
文摘This paper investigates the use of the method of inequalities (MoI) to design output-feedback compensators for the problem of the control of instabilities in a laminar plane Poiseuille flow. In common with many flows, the dynamics of streamwise vortices in plane Poiseuille flow are very non-normal. Consequently, small perturbations grow rapidly with a large transient that may trigger nonlinearities and lead to turbulence even though such perturbations would, in a linear flow model, eventually decay. Such a system can be described as a conditionally linear system. The sensitivity is measured using the maximum transient energy growth, which is widely used in the fluid dynamics community. The paper considers two approaches. In the first approach, the MoI is used to design low-order proportional and proportional-integral (PI) controllers. In the second one, the MoI is combined with McFarlane and Glover's H∞ loop-shaping design procedure in a mixed-optimization approach.