The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance a...The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance as the generator.It is the key technology to realize new energy grid connections’stable and reliable operation.This project studies a dynamic simulation model of an extensive new energy power system based on the virtual synchronous motor.A new energy storage method is proposed.The mathematical energy storage model is established by combining the fixed rotor model of a synchronous virtual machine with the charge-discharge power,state of charge,operation efficiency,dead zone,and inverter constraint.The rapid conversion of energy storage devices absorbs the excess instantaneous kinetic energy caused by interference.The branch transient of the critical cut set in the system can be confined to a limited area.Thus,the virtual synchronizer’s kinetic and potential energy can be efficiently converted into an instantaneous state.The simulation of power system analysis software package(PSASP)verifies the correctness of the theory and algorithm in this paper.This paper provides a theoretical basis for improving the transient stability of new energy-connected power grids.展开更多
Transient electronics are an emerging class of electronics with the unique characteristic to completely dissolve within a programmed period of time. Since no harmful byproducts are released, these electronics can be u...Transient electronics are an emerging class of electronics with the unique characteristic to completely dissolve within a programmed period of time. Since no harmful byproducts are released, these electronics can be used in the human body as a diagnostic tool, for instance, or they can be used as environmentally friendly alternatives to existing electronics which disintegrate when exposed to water. Thus, the most crucial aspect of transient electronics is their ability to disintegrate in a practical manner and a review of the literature on this topic is essential for understanding the current capabilities of transient electronics and areas of future research. In the past, only partial dissolution of transient electronics was possible, however, total dissolution has been achieved with a recent discovery that silicon nanomembrane undergoes hydrolysis. The use of single- and multi-layered structures has also been explored as a way to extend the lifetime of the electronics. Analytical models have been developed to study the dissolution of various functional materials as well as the devices constructed from this set of functional materials and these models prove to be useful in the design of the transient electronics.展开更多
Experimental stroke research commonly employs focal cerebral ischemic rat models (Bederson et al., 1986a; Longa et al., 1989). In human patients, ischemic stroke typically results from thrombotic or embolic occlusio...Experimental stroke research commonly employs focal cerebral ischemic rat models (Bederson et al., 1986a; Longa et al., 1989). In human patients, ischemic stroke typically results from thrombotic or embolic occlusion of a major cerebral artery, usually the mid- dle cerebral artery (MCA). Experimental focal cerebral ischemia models have been employed to mimic human stroke (Durukan and Tatlisumak, 2007). Rodent models of focal cerebral ischemia that do not require craniotomy have been developed using intraluminal suture occlusion of the MCA (MCA occlusion, MCAO) (Rosamond et al., 2008). Furthermore, mouse MCAO models have been wide- ly used and extended to genetic studies of cell death or recovery mechanisms (Liu and McCullough, 2011). Genetically engineered mouse stroke models are particularly useful for evaluation of isch- emic pathophysiology and the design of new prophylactic, neuro- protective, and therapeutic agents and interventions (Armstead et al., 2010). During the past two decades, MCAO surgical techniques have been developed that do not reveal surgical techniques for mouse MCAO model engineering. Therefore, we compared MCAO surgical methods in rats and mice.展开更多
This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a f...This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a fundamental solution in Laplace space for FGMs is constructed. Next, a hybrid graded element is formulated based on the obtained fundamental solution and a frame field. As a result, the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field. Further, Stefest's algorithm is employed to convert the results in Laplace space back into the time-space domain. Finally, the performance of the proposed method is assessed by several benchmark examples. The results demonstrate well the efficiency and accuracy of the proposed method.展开更多
The purpose of this research is to develop a SolidWorks? model for transient temperature field of laser welding of PMMA/SS 304 materials for application in fabrication of the ultrasonic back-plate, with a view of opti...The purpose of this research is to develop a SolidWorks? model for transient temperature field of laser welding of PMMA/SS 304 materials for application in fabrication of the ultrasonic back-plate, with a view of optimizing the experimental conditions. The study is carried out on these materials because of the increasing application of both metals and non-metals. The work focuses specifically on these materials because they have been experimentally studied previously and as such, this study can be accepted as an assessment into feasibility of using SolidWorks? model to study the temperature field of the laser welding processes of metals and non-metals. The results of the SolidWorks? transient thermal model show that there is a concentration of high temperatures at the point of contact. It also shows that temperature decreases as we move in (between laser and the top face) to the thickness of the part. Additionally the maximum temperature occurs at the last point of the welding;this may be due to the accumulation of the temperature before arriving at the end. These findings are comparable to the previous simulated and experimental results on temperature field during laser welding of PMMA/SS 304 materials. However, SolidWorks? is shown to present a challenge in modeling a moving source of laser power.展开更多
A modified one-dimensional transient hygrothermal model for multilayer wall was proposed using air humidity ratio and temperature as the driving potentials.The solution for the governing equations was obtained numeric...A modified one-dimensional transient hygrothermal model for multilayer wall was proposed using air humidity ratio and temperature as the driving potentials.The solution for the governing equations was obtained numerically by implementing the finite-difference scheme.To evaluate the accuracy of the model,a test system was built up to measure relative humidity and temperature within a porous wall and compare with the prediction of the model.The prediction results have good agreement with the experimental results.For the interface close to indoor side,the maximum deviation of temperature between calculated and test data is 1.87 K,and the average deviation is 0.95 K;the maximum deviation of relative humidity is 11.4%,and the average deviation is 5.7%.For the interface close to outdoor side,the maximum deviation of temperature between prediction and measurement is 1.78 K,and the average deviation is 1.1 K;the maximum deviation of relative humidity is 9.9%,and the average deviation is 4.2%.展开更多
A new analytical model of a 3-degree-of-freedom (3-DOF) gyro-accelerometer system consisting of a 1-DOF drive and 2-DOF sense modes is presented. The model constructs lumped differential equations associated with ea...A new analytical model of a 3-degree-of-freedom (3-DOF) gyro-accelerometer system consisting of a 1-DOF drive and 2-DOF sense modes is presented. The model constructs lumped differential equations associated with each DOFof the system by vector analysis. The coupled differential equations thus established are solved analytically for their responses in both the time and frequency domains. Considering these frequency response equations, novel device design concepts are derived by forcing the sense phase to zero, which leads to a certain relationship between the structural frequencies, thereby causing minimization of the damping effect on the performance of the system. Furthermore, the feasibility of the present gyro-accelerometer structure is studied using a unique discriminatory scheme for the detection of both gyro action and linear acceleration at their events. This scheme combines the formulated settled transient solution of the gyro-accelerometer with the processes of synchronous demodulation and filtration, which leads to the in-phase and quadrature components of the system's output signal. These two components can be utilized in the detection of angular motion and linear acceleration. The obtained analytical results are validated by simulation in a MATLAB/Simulink environment, and it is found that the results are in excellent agreement with each other.展开更多
As the classical transient flow model cannot simulate the water hammer effect of gas well, a transient flow mathematical model of multiphase flow gas well is established based on the mechanism of water hammer effect a...As the classical transient flow model cannot simulate the water hammer effect of gas well, a transient flow mathematical model of multiphase flow gas well is established based on the mechanism of water hammer effect and the theory of multiphase flow. With this model, the transient flow of gas well can be simulated by segmenting the curved part of tubing and calculating numerical solution with the method of characteristic curve. The results show that the higher the opening coefficient of the valve when closed, the larger the peak value of the wellhead pressure, the more gentle the pressure fluctuation, and the less obvious the pressure mutation area will be. On the premise of not exceeding the maximum shut-in pressure of the tubing, adopting large opening coefficient can reduce the impact of the pressure wave. The higher the cross-section liquid holdup, the greater the pressure wave speed, and the shorter the propagation period will be. The larger the liquid holdup, the larger the variation range of pressure, and the greater the pressure will be. In actual production, the production parameters can be adjusted to get the appropriate liquid holdup, control the magnitude and range of fluctuation pressure, and reduce the impact of water hammer effect. When the valve closing time increases, the maximum fluctuating pressure value of the wellhead decreases, the time of pressure peak delays, and the pressure mutation area gradually disappears. The shorter the valve closing time, the faster the pressure wave propagates. Case simulation proves that the transient flow model of gas well can optimize the reasonable valve opening coefficient and valve closing time, reduce the harm of water hammer impact on the wellhead device and tubing, and ensure the integrity of the wellbore.展开更多
A transient molecular network model is built to describe the non- linear viscoelasticity of polymers by considering the effect of entanglement loss and regeneration on the relaxation of molecular strands. It is an ext...A transient molecular network model is built to describe the non- linear viscoelasticity of polymers by considering the effect of entanglement loss and regeneration on the relaxation of molecular strands. It is an extension of previous network theories. The experimental data on three thermoplastic polymers (ABS, PVC and PA6) obtained under various loading conditions are used to test the model. Agreement between the theoretical and experimental curves shows that the suggested model can describe successfully the relaxation behavior of the thermoplastic polymers under different loading rates by using relatively few relaxation modes. Thus the mi- cromechanism responsible for strain-rate dependence of relaxation process and the origin of nonlinear viscoelasticity may be disclosed.展开更多
A practical approach is discussed for sub-sea pipeline monitoring and leak detection based on the real time transient model . The characteristic method of transient simulation is coupled with the Extended Kalman Filt...A practical approach is discussed for sub-sea pipeline monitoring and leak detection based on the real time transient model . The characteristic method of transient simulation is coupled with the Extended Kalman Filter to estimate the system state where the only observed data are inlet and outlet flow rate and pressure. Because EKF has a time variant track under the non-stationary stochastic process with additive Gaussian noise, the high sensitivity of RTTM to non-stationary operating condition is reduced. A leak location recursion estimation formula is presented based on the real time observed data. The results of 27 groups of test data indicate that the procedure presented is sensitive to a wide range of detectable leak sizes and has a low average relative error of leak location .展开更多
Porous electrodes with three-phase reaction in low temperature fuel cells have attracted much attention by their flooding phenomena. In order to have a better understanding of the flooding phenomena inside electrode, ...Porous electrodes with three-phase reaction in low temperature fuel cells have attracted much attention by their flooding phenomena. In order to have a better understanding of the flooding phenomena inside electrode, it is important to evaluate various discharge conditions of the flooded electrodes. A model of flooded porous electrode under the influence of potential sweep was developed to evaluate the flooding conditions in-situ. The hysteresis of current density vs. time was observed at high sweep rates (1 O0 mV.sl). It was not observed at low sweep rate (0.1 mV-s~). In this study, these characteristics of flooding and hysteresis conditions were found to be markedly dependent on the potential scan rate. These dynamic behaviors are interpreted in terms of water saturation response, velocity of water movement, and evaporation rate of water.展开更多
Grid-forming converters(GFMs)are faced with the threat of transient inrush current and synchronization instability issues when subjected to grid faults.Instead of disconnecting from the grid unintentionally,GFMs are r...Grid-forming converters(GFMs)are faced with the threat of transient inrush current and synchronization instability issues when subjected to grid faults.Instead of disconnecting from the grid unintentionally,GFMs are required to have fault ride through(FRT)capability to maintain safe and stable operation in grid-connected mode during grid fault periods.In recent studies,different FRT control strategies with distinguishing features and that are feasible for different operation conditions have been proposed for GFMs.To determine their application scope,an intuitive comparison of the transient performance of different FRT control strategies is presented in this paper.First,three typical FRT control strategies(virtual impedance,current limiters,and mode-switching control)are introduced and transient mathematical models are established.A detailed comparison analysis on transient inrush current and transient synchronization stability is then presented.The results will be useful for guiding the selection and design of FRT control strategies.Finally,simulation results based on PSCAD/EMTDC are considered to verify the correctness of the theoretical analysis.展开更多
Solar-air source heat pump(solar-ASHP)system has a potential application in the field of hot water and space heating in residential buildings.Such system features the complementary advantages to solve the discontinuou...Solar-air source heat pump(solar-ASHP)system has a potential application in the field of hot water and space heating in residential buildings.Such system features the complementary advantages to solve the discontinuous operation of the single solar system and the frosting issue of the single ASHP system.This paper built the solar-ASHP systems in Kunming and Shangri-La,and tested the system performance under different weather conditions in these two regions of plateau.Meanwhile,the transient heat balance models of the system were established under the sunlight time and non-sunlight time and were verified by the experimental results.Moreover,the verified model was applied to reveal the energy balance performance between the energy supply and building heat demand.The law of the system performance affected by the ambient temperature,effective heat collecting area,and cumulative heating capacity of collector was explored by the validated model.The results indicate that when the ambient temperature decreases by 1℃during non-sunlight time,the energy efficiency ratio decreases by about 0.07.A square meter decline in the effective heat collecting area pushes an increase in the heating capacity of 5.75 MJ.Meanwhile,the cumulative heating capacity of collector increases by 5 MJ,and the ASHP energy consumption decreases by 0.54 kWh.The dynamic changes of the ambient temperature and instantaneous solar radiation are the main reasons of the heat balance errors.Therefore,both the developed system and model are feasible and reliable in different climate regions.展开更多
Integration of renewable energy generators has greatly altered both static and dynamic characteristics of the system.Combined with the uncertainties it introduced,the risk of a system being transient instable is signi...Integration of renewable energy generators has greatly altered both static and dynamic characteristics of the system.Combined with the uncertainties it introduced,the risk of a system being transient instable is significantly alleviated.This paper proposes a multi-objective coordinated post-contingency control method.It aims to increase post-contingency system security with emergence control(EC)while minimizing the total control cost.Two ECs are adopted in this paper:energy storage systems(ESSs)and emergency load shedding(ELS).ESSs are immediately connected to the network after contingency occurrence to provide both active and reactive power support.ELS will be triggered when the support from ESSs is insufficient to stabilize the system to prevent further deterioration of system security.Performance of the proposed method was evaluated on a modified New England 39-bus benchmark system.The results indicate that the proposed method can find solutions to stabilize the system against credible contingencies and optimally balance between system stability and economy.展开更多
Micro-thermal conductivity detector(μTCD)gas sensors work by detecting changes in the thermal conductivity of the surrounding medium and are used as detectors in many applications such as gas chromatography systems.C...Micro-thermal conductivity detector(μTCD)gas sensors work by detecting changes in the thermal conductivity of the surrounding medium and are used as detectors in many applications such as gas chromatography systems.Conventional TCDs use steady-state resistance(i.e.,temperature)measurements of a micro-heater.In this work,we developed a new measurement method and hardware configuration based on the processing of the transient response of a low thermal mass TCD to an electric current step.The method was implemented for a 100-μm-long and 1-μm-thick micro-fabricated bridge that consisted of doped polysilicon conductive film passivated with a 200-nm silicon nitride layer.Transient resistance variations of theμTCD in response to a square current pulse were studied in multiple mixtures of dilute gases in nitrogen.Simulations and experimental results are presented and compared for the time resolved and steady-state regime of the sensor response.Thermal analysis and simulation show that the sensor response is exponential in the transient state,that the time constant of this exponential variation was a linear function of the thermal conductivity of the gas ambient,and that the sensor was able to quantify the mixture composition.The level of detection in nitrogen was estimated to be from 25 ppm for helium to 178 ppm for carbon dioxide.With this novel approach,the sensor requires approximately 3.6 nJ for a single measurement and needs only 300μs of sampling time.This is less than the energy and time required for steady-state DC measurements.展开更多
Ultra-broadband,intense,coherent terahertz(THz)radiation can be generated,detected,and manipulated using laser-induced gas or liquid plasma as both the THz wave transmitter and detector,with a frequency coverage spann...Ultra-broadband,intense,coherent terahertz(THz)radiation can be generated,detected,and manipulated using laser-induced gas or liquid plasma as both the THz wave transmitter and detector,with a frequency coverage spanning across and beyond the whole THz gap."Such a research topic is termed plasma-based THz wave photonics in gas and liquid phases."In this paper,we review the most important experimental and theoretical works of the topic in the non-relativistic region with pump laser intensity below 1018 W/cm^(2).展开更多
Objective: To explore the effects of the extract from Phyllanthus urinaria L. on hepatitis B virus (HBV) replication and expression in HBV transient transfection model in vitro. Methods: The eukaryotic expression ...Objective: To explore the effects of the extract from Phyllanthus urinaria L. on hepatitis B virus (HBV) replication and expression in HBV transient transfection model in vitro. Methods: The eukaryotic expression plasmid pHBVI.1, which contains l.l-fold-overlength genome of HBV, was transfected into the human hepatoma cell line, HepG2, to establish and assess the HBV transient transfection model. The extract from Phyllanthus urinaria L. was prepared in different concentrations and methyl thiazolyl tetrazolium was used to detect the maximum nontoxic concentration of the drug. The extract from Phyllanthus urinaria L. were added into the transfected cell, at the concentrations of 0.8, 0.2 and 0.05 g/L, respectively. Four days after drug application, enzyme-linked immuno sorbent assay was used to detect the concentration of HBsAg in the supernatants, Southern blot was applied to analyze HBV DNA level, and Western blot was used to detect the expression of HBcAg in cells. Results: After the transfection of plasmid pHBVI.1 into HepG2 cells, the concentration of HBsAg in supernatants was increased obviously as compared with that of the normal cells (P〈0.05), and all expected HBV replicative intermediates were confirmed by Southern blot analysis, which ensured the successful establishment of the HBV transient transfection model. After the application of drugs at the concentrations of 0.8 and 0.2 g/L, the level of HBsAg was obviously decreased in the supernatants, as compared with that of the virus group (P〈0.05); Southern blot showed that the level of HBV rc DNA, ds DNA, ss DNA was obviously reduced compared with that of the virus group (P〈0.01); Western blot revealed that the expression of HBcAg in the drug group was obviously inhibited, as compared with that of the virus group (P〈0.01). Conclusions: The extract from Phyllanthus urinaria L. obviously inhibited replication and expression of HBV in HBV transfected cell lines in vitro, thus exerting distinctive anti-HBV effects.展开更多
Unmanned Aerial Vehicle(UAV) is developing towards the direction of High Altitude Long Endurance(HALE). This will have an important influence on the stability of its airborne electronic equipment using passive the...Unmanned Aerial Vehicle(UAV) is developing towards the direction of High Altitude Long Endurance(HALE). This will have an important influence on the stability of its airborne electronic equipment using passive thermal management. In this paper, a multi-node transient thermal model for airborne electronic equipment is set up based on the thermal network method to predict their dynamic temperature responses under high altitude and long flight time conditions. Some relevant factors are considered into this temperature prediction model including flight environment,radiation, convection, heat conduction, etc. An experimental chamber simulating a high altitude flight environment was set up to survey the dynamic thermal responses of airborne electronic equipment in a UAV. According to the experimental measurement results, the multi-node transient thermal model is verified without consideration of the effects of flight speed. Then, a modified way about outside flight speed is added into the model to improve the temperature prediction performance. Finally, the corresponding simulation code is developed based on the proposed model. It can realize the dynamic temperature prediction of airborne electronic equipment under HALE conditions.展开更多
文摘The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance as the generator.It is the key technology to realize new energy grid connections’stable and reliable operation.This project studies a dynamic simulation model of an extensive new energy power system based on the virtual synchronous motor.A new energy storage method is proposed.The mathematical energy storage model is established by combining the fixed rotor model of a synchronous virtual machine with the charge-discharge power,state of charge,operation efficiency,dead zone,and inverter constraint.The rapid conversion of energy storage devices absorbs the excess instantaneous kinetic energy caused by interference.The branch transient of the critical cut set in the system can be confined to a limited area.Thus,the virtual synchronizer’s kinetic and potential energy can be efficiently converted into an instantaneous state.The simulation of power system analysis software package(PSASP)verifies the correctness of the theory and algorithm in this paper.This paper provides a theoretical basis for improving the transient stability of new energy-connected power grids.
基金the start-up fund provided by the Engineering Science and Mechanics Department, College of Engineering, and Materials Research Institute at the Pennsylvania State University (215-37 1001 cc:H.Cheng)
文摘Transient electronics are an emerging class of electronics with the unique characteristic to completely dissolve within a programmed period of time. Since no harmful byproducts are released, these electronics can be used in the human body as a diagnostic tool, for instance, or they can be used as environmentally friendly alternatives to existing electronics which disintegrate when exposed to water. Thus, the most crucial aspect of transient electronics is their ability to disintegrate in a practical manner and a review of the literature on this topic is essential for understanding the current capabilities of transient electronics and areas of future research. In the past, only partial dissolution of transient electronics was possible, however, total dissolution has been achieved with a recent discovery that silicon nanomembrane undergoes hydrolysis. The use of single- and multi-layered structures has also been explored as a way to extend the lifetime of the electronics. Analytical models have been developed to study the dissolution of various functional materials as well as the devices constructed from this set of functional materials and these models prove to be useful in the design of the transient electronics.
基金supported by the 2013 Inje University Research Grant
文摘Experimental stroke research commonly employs focal cerebral ischemic rat models (Bederson et al., 1986a; Longa et al., 1989). In human patients, ischemic stroke typically results from thrombotic or embolic occlusion of a major cerebral artery, usually the mid- dle cerebral artery (MCA). Experimental focal cerebral ischemia models have been employed to mimic human stroke (Durukan and Tatlisumak, 2007). Rodent models of focal cerebral ischemia that do not require craniotomy have been developed using intraluminal suture occlusion of the MCA (MCA occlusion, MCAO) (Rosamond et al., 2008). Furthermore, mouse MCAO models have been wide- ly used and extended to genetic studies of cell death or recovery mechanisms (Liu and McCullough, 2011). Genetically engineered mouse stroke models are particularly useful for evaluation of isch- emic pathophysiology and the design of new prophylactic, neuro- protective, and therapeutic agents and interventions (Armstead et al., 2010). During the past two decades, MCAO surgical techniques have been developed that do not reveal surgical techniques for mouse MCAO model engineering. Therefore, we compared MCAO surgical methods in rats and mice.
文摘This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a fundamental solution in Laplace space for FGMs is constructed. Next, a hybrid graded element is formulated based on the obtained fundamental solution and a frame field. As a result, the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field. Further, Stefest's algorithm is employed to convert the results in Laplace space back into the time-space domain. Finally, the performance of the proposed method is assessed by several benchmark examples. The results demonstrate well the efficiency and accuracy of the proposed method.
文摘The purpose of this research is to develop a SolidWorks? model for transient temperature field of laser welding of PMMA/SS 304 materials for application in fabrication of the ultrasonic back-plate, with a view of optimizing the experimental conditions. The study is carried out on these materials because of the increasing application of both metals and non-metals. The work focuses specifically on these materials because they have been experimentally studied previously and as such, this study can be accepted as an assessment into feasibility of using SolidWorks? model to study the temperature field of the laser welding processes of metals and non-metals. The results of the SolidWorks? transient thermal model show that there is a concentration of high temperatures at the point of contact. It also shows that temperature decreases as we move in (between laser and the top face) to the thickness of the part. Additionally the maximum temperature occurs at the last point of the welding;this may be due to the accumulation of the temperature before arriving at the end. These findings are comparable to the previous simulated and experimental results on temperature field during laser welding of PMMA/SS 304 materials. However, SolidWorks? is shown to present a challenge in modeling a moving source of laser power.
基金Project(51078127) supported by the National Natural Science Foundation of ChinaProject(JJ201109091631) supported by the Foundation for Young Scientists of Jiangxi Education Department, China
文摘A modified one-dimensional transient hygrothermal model for multilayer wall was proposed using air humidity ratio and temperature as the driving potentials.The solution for the governing equations was obtained numerically by implementing the finite-difference scheme.To evaluate the accuracy of the model,a test system was built up to measure relative humidity and temperature within a porous wall and compare with the prediction of the model.The prediction results have good agreement with the experimental results.For the interface close to indoor side,the maximum deviation of temperature between calculated and test data is 1.87 K,and the average deviation is 0.95 K;the maximum deviation of relative humidity is 11.4%,and the average deviation is 5.7%.For the interface close to outdoor side,the maximum deviation of temperature between prediction and measurement is 1.78 K,and the average deviation is 1.1 K;the maximum deviation of relative humidity is 9.9%,and the average deviation is 4.2%.
文摘A new analytical model of a 3-degree-of-freedom (3-DOF) gyro-accelerometer system consisting of a 1-DOF drive and 2-DOF sense modes is presented. The model constructs lumped differential equations associated with each DOFof the system by vector analysis. The coupled differential equations thus established are solved analytically for their responses in both the time and frequency domains. Considering these frequency response equations, novel device design concepts are derived by forcing the sense phase to zero, which leads to a certain relationship between the structural frequencies, thereby causing minimization of the damping effect on the performance of the system. Furthermore, the feasibility of the present gyro-accelerometer structure is studied using a unique discriminatory scheme for the detection of both gyro action and linear acceleration at their events. This scheme combines the formulated settled transient solution of the gyro-accelerometer with the processes of synchronous demodulation and filtration, which leads to the in-phase and quadrature components of the system's output signal. These two components can be utilized in the detection of angular motion and linear acceleration. The obtained analytical results are validated by simulation in a MATLAB/Simulink environment, and it is found that the results are in excellent agreement with each other.
基金Supported by National Science and Technology Major Project of the Ministry of Science and Technology of China(2016ZX05026-002,2016ZX05028-001,2016ZX05024-005)
文摘As the classical transient flow model cannot simulate the water hammer effect of gas well, a transient flow mathematical model of multiphase flow gas well is established based on the mechanism of water hammer effect and the theory of multiphase flow. With this model, the transient flow of gas well can be simulated by segmenting the curved part of tubing and calculating numerical solution with the method of characteristic curve. The results show that the higher the opening coefficient of the valve when closed, the larger the peak value of the wellhead pressure, the more gentle the pressure fluctuation, and the less obvious the pressure mutation area will be. On the premise of not exceeding the maximum shut-in pressure of the tubing, adopting large opening coefficient can reduce the impact of the pressure wave. The higher the cross-section liquid holdup, the greater the pressure wave speed, and the shorter the propagation period will be. The larger the liquid holdup, the larger the variation range of pressure, and the greater the pressure will be. In actual production, the production parameters can be adjusted to get the appropriate liquid holdup, control the magnitude and range of fluctuation pressure, and reduce the impact of water hammer effect. When the valve closing time increases, the maximum fluctuating pressure value of the wellhead decreases, the time of pressure peak delays, and the pressure mutation area gradually disappears. The shorter the valve closing time, the faster the pressure wave propagates. Case simulation proves that the transient flow model of gas well can optimize the reasonable valve opening coefficient and valve closing time, reduce the harm of water hammer impact on the wellhead device and tubing, and ensure the integrity of the wellbore.
基金The project supported by the National Natural Science Foundation of China and Doctorial Fund
文摘A transient molecular network model is built to describe the non- linear viscoelasticity of polymers by considering the effect of entanglement loss and regeneration on the relaxation of molecular strands. It is an extension of previous network theories. The experimental data on three thermoplastic polymers (ABS, PVC and PA6) obtained under various loading conditions are used to test the model. Agreement between the theoretical and experimental curves shows that the suggested model can describe successfully the relaxation behavior of the thermoplastic polymers under different loading rates by using relatively few relaxation modes. Thus the mi- cromechanism responsible for strain-rate dependence of relaxation process and the origin of nonlinear viscoelasticity may be disclosed.
文摘A practical approach is discussed for sub-sea pipeline monitoring and leak detection based on the real time transient model . The characteristic method of transient simulation is coupled with the Extended Kalman Filter to estimate the system state where the only observed data are inlet and outlet flow rate and pressure. Because EKF has a time variant track under the non-stationary stochastic process with additive Gaussian noise, the high sensitivity of RTTM to non-stationary operating condition is reduced. A leak location recursion estimation formula is presented based on the real time observed data. The results of 27 groups of test data indicate that the procedure presented is sensitive to a wide range of detectable leak sizes and has a low average relative error of leak location .
文摘Porous electrodes with three-phase reaction in low temperature fuel cells have attracted much attention by their flooding phenomena. In order to have a better understanding of the flooding phenomena inside electrode, it is important to evaluate various discharge conditions of the flooded electrodes. A model of flooded porous electrode under the influence of potential sweep was developed to evaluate the flooding conditions in-situ. The hysteresis of current density vs. time was observed at high sweep rates (1 O0 mV.sl). It was not observed at low sweep rate (0.1 mV-s~). In this study, these characteristics of flooding and hysteresis conditions were found to be markedly dependent on the potential scan rate. These dynamic behaviors are interpreted in terms of water saturation response, velocity of water movement, and evaporation rate of water.
基金supported by the National Natural Science Foundation of China(Grant No.52207190)Jiangsu Excellent Postdoctoral Program,China(Grant No.2022ZB80).
文摘Grid-forming converters(GFMs)are faced with the threat of transient inrush current and synchronization instability issues when subjected to grid faults.Instead of disconnecting from the grid unintentionally,GFMs are required to have fault ride through(FRT)capability to maintain safe and stable operation in grid-connected mode during grid fault periods.In recent studies,different FRT control strategies with distinguishing features and that are feasible for different operation conditions have been proposed for GFMs.To determine their application scope,an intuitive comparison of the transient performance of different FRT control strategies is presented in this paper.First,three typical FRT control strategies(virtual impedance,current limiters,and mode-switching control)are introduced and transient mathematical models are established.A detailed comparison analysis on transient inrush current and transient synchronization stability is then presented.The results will be useful for guiding the selection and design of FRT control strategies.Finally,simulation results based on PSCAD/EMTDC are considered to verify the correctness of the theoretical analysis.
基金This work was supported by the National Natural Science Foundation of China(No.51666018,No.51966019)Department of Education Foundation in Yunnan Province of China(No.2018JS147).
文摘Solar-air source heat pump(solar-ASHP)system has a potential application in the field of hot water and space heating in residential buildings.Such system features the complementary advantages to solve the discontinuous operation of the single solar system and the frosting issue of the single ASHP system.This paper built the solar-ASHP systems in Kunming and Shangri-La,and tested the system performance under different weather conditions in these two regions of plateau.Meanwhile,the transient heat balance models of the system were established under the sunlight time and non-sunlight time and were verified by the experimental results.Moreover,the verified model was applied to reveal the energy balance performance between the energy supply and building heat demand.The law of the system performance affected by the ambient temperature,effective heat collecting area,and cumulative heating capacity of collector was explored by the validated model.The results indicate that when the ambient temperature decreases by 1℃during non-sunlight time,the energy efficiency ratio decreases by about 0.07.A square meter decline in the effective heat collecting area pushes an increase in the heating capacity of 5.75 MJ.Meanwhile,the cumulative heating capacity of collector increases by 5 MJ,and the ASHP energy consumption decreases by 0.54 kWh.The dynamic changes of the ambient temperature and instantaneous solar radiation are the main reasons of the heat balance errors.Therefore,both the developed system and model are feasible and reliable in different climate regions.
基金supported by Arc Research Huh for Integrated Energy Storage Solutions(IH180100020).
文摘Integration of renewable energy generators has greatly altered both static and dynamic characteristics of the system.Combined with the uncertainties it introduced,the risk of a system being transient instable is significantly alleviated.This paper proposes a multi-objective coordinated post-contingency control method.It aims to increase post-contingency system security with emergence control(EC)while minimizing the total control cost.Two ECs are adopted in this paper:energy storage systems(ESSs)and emergency load shedding(ELS).ESSs are immediately connected to the network after contingency occurrence to provide both active and reactive power support.ELS will be triggered when the support from ESSs is insufficient to stabilize the system to prevent further deterioration of system security.Performance of the proposed method was evaluated on a modified New England 39-bus benchmark system.The results indicate that the proposed method can find solutions to stabilize the system against credible contingencies and optimally balance between system stability and economy.
基金The sensor that was tested in this work is based on the patents:No.7,911,010,No.8,426,932 and No.8,884,382.
文摘Micro-thermal conductivity detector(μTCD)gas sensors work by detecting changes in the thermal conductivity of the surrounding medium and are used as detectors in many applications such as gas chromatography systems.Conventional TCDs use steady-state resistance(i.e.,temperature)measurements of a micro-heater.In this work,we developed a new measurement method and hardware configuration based on the processing of the transient response of a low thermal mass TCD to an electric current step.The method was implemented for a 100-μm-long and 1-μm-thick micro-fabricated bridge that consisted of doped polysilicon conductive film passivated with a 200-nm silicon nitride layer.Transient resistance variations of theμTCD in response to a square current pulse were studied in multiple mixtures of dilute gases in nitrogen.Simulations and experimental results are presented and compared for the time resolved and steady-state regime of the sensor response.Thermal analysis and simulation show that the sensor response is exponential in the transient state,that the time constant of this exponential variation was a linear function of the thermal conductivity of the gas ambient,and that the sensor was able to quantify the mixture composition.The level of detection in nitrogen was estimated to be from 25 ppm for helium to 178 ppm for carbon dioxide.With this novel approach,the sensor requires approximately 3.6 nJ for a single measurement and needs only 300μs of sampling time.This is less than the energy and time required for steady-state DC measurements.
基金supported by the National Natural Science Foundation of China(Nos.62075157,61875151,and 62235013)Tianjin Municipal Fund for Distinguished Young Scholars(No.20JCJQJC00190)+3 种基金Key Fund of Shenzhen Natural Science Foundation(No.JCYJ20200109150212515)National Key Research and Development Program of China(No.2017YFA0701000)Prof.Xi-Cheng Zhang in The Institute of Optics at University of Rochester has support from the Air Force Office of Scientific Research(Nos.FA9550-21-1-0389 and FA9550-21-1-0300)the National Science Foundation(No.ECCS-2152081).
文摘Ultra-broadband,intense,coherent terahertz(THz)radiation can be generated,detected,and manipulated using laser-induced gas or liquid plasma as both the THz wave transmitter and detector,with a frequency coverage spanning across and beyond the whole THz gap."Such a research topic is termed plasma-based THz wave photonics in gas and liquid phases."In this paper,we review the most important experimental and theoretical works of the topic in the non-relativistic region with pump laser intensity below 1018 W/cm^(2).
基金Supported by the New Teachers Foundation of Ministry of Education of China(No.20100013120002)the University Autonomy Subject of Beijing University of Chinese Medicine(No.JYBZZ-JS017)the Innovation Team Foundation "the Basic Research in Key Scientific Issues of the Modern Application of Classical Prescription" of Beijing University of Chinese Medicine(No.2011-CXD-040)
文摘Objective: To explore the effects of the extract from Phyllanthus urinaria L. on hepatitis B virus (HBV) replication and expression in HBV transient transfection model in vitro. Methods: The eukaryotic expression plasmid pHBVI.1, which contains l.l-fold-overlength genome of HBV, was transfected into the human hepatoma cell line, HepG2, to establish and assess the HBV transient transfection model. The extract from Phyllanthus urinaria L. was prepared in different concentrations and methyl thiazolyl tetrazolium was used to detect the maximum nontoxic concentration of the drug. The extract from Phyllanthus urinaria L. were added into the transfected cell, at the concentrations of 0.8, 0.2 and 0.05 g/L, respectively. Four days after drug application, enzyme-linked immuno sorbent assay was used to detect the concentration of HBsAg in the supernatants, Southern blot was applied to analyze HBV DNA level, and Western blot was used to detect the expression of HBcAg in cells. Results: After the transfection of plasmid pHBVI.1 into HepG2 cells, the concentration of HBsAg in supernatants was increased obviously as compared with that of the normal cells (P〈0.05), and all expected HBV replicative intermediates were confirmed by Southern blot analysis, which ensured the successful establishment of the HBV transient transfection model. After the application of drugs at the concentrations of 0.8 and 0.2 g/L, the level of HBsAg was obviously decreased in the supernatants, as compared with that of the virus group (P〈0.05); Southern blot showed that the level of HBV rc DNA, ds DNA, ss DNA was obviously reduced compared with that of the virus group (P〈0.01); Western blot revealed that the expression of HBcAg in the drug group was obviously inhibited, as compared with that of the virus group (P〈0.01). Conclusions: The extract from Phyllanthus urinaria L. obviously inhibited replication and expression of HBV in HBV transfected cell lines in vitro, thus exerting distinctive anti-HBV effects.
基金the financial support of National Key R&D Program of China (No.2017YFB1201100)
文摘Unmanned Aerial Vehicle(UAV) is developing towards the direction of High Altitude Long Endurance(HALE). This will have an important influence on the stability of its airborne electronic equipment using passive thermal management. In this paper, a multi-node transient thermal model for airborne electronic equipment is set up based on the thermal network method to predict their dynamic temperature responses under high altitude and long flight time conditions. Some relevant factors are considered into this temperature prediction model including flight environment,radiation, convection, heat conduction, etc. An experimental chamber simulating a high altitude flight environment was set up to survey the dynamic thermal responses of airborne electronic equipment in a UAV. According to the experimental measurement results, the multi-node transient thermal model is verified without consideration of the effects of flight speed. Then, a modified way about outside flight speed is added into the model to improve the temperature prediction performance. Finally, the corresponding simulation code is developed based on the proposed model. It can realize the dynamic temperature prediction of airborne electronic equipment under HALE conditions.