期刊文献+
共找到412篇文章
< 1 2 21 >
每页显示 20 50 100
Kernel Generalization of Multi-Rate Probabilistic Principal Component Analysis for Fault Detection in Nonlinear Process 被引量:3
1
作者 Donglei Zheng Le Zhou Zhihuan Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第8期1465-1476,共12页
In practical process industries,a variety of online and offline sensors and measuring instruments have been used for process control and monitoring purposes,which indicates that the measurements coming from different ... In practical process industries,a variety of online and offline sensors and measuring instruments have been used for process control and monitoring purposes,which indicates that the measurements coming from different sources are collected at different sampling rates.To build a complete process monitoring strategy,all these multi-rate measurements should be considered for data-based modeling and monitoring.In this paper,a novel kernel multi-rate probabilistic principal component analysis(K-MPPCA)model is proposed to extract the nonlinear correlations among different sampling rates.In the proposed model,the model parameters are calibrated using the kernel trick and the expectation-maximum(EM)algorithm.Also,the corresponding fault detection methods based on the nonlinear features are developed.Finally,a simulated nonlinear case and an actual pre-decarburization unit in the ammonia synthesis process are tested to demonstrate the efficiency of the proposed method. 展开更多
关键词 fault detection kernel method multi-rate process probability principal component analysis(PPCA)
下载PDF
Combination Method of Principal Component Analysis and Support Vector Machine for On-line Process Monitoring and Fault Diagnosis 被引量:2
2
作者 赵旭 文香军 邵惠鹤 《Journal of Donghua University(English Edition)》 EI CAS 2006年第1期53-58,共6页
On-line monitoring and fault diagnosis of chemical process is extremely important for operation safety and product quality. Principal component analysis (PCA) has been widely used in multivariate statistical process m... On-line monitoring and fault diagnosis of chemical process is extremely important for operation safety and product quality. Principal component analysis (PCA) has been widely used in multivariate statistical process monitoring for its ability to reduce processes dimensions. PCA and other statistical techniques, however, have difficulties in differentiating faults correctly in complex chemical process. Support vector machine (SVM) is a novel approach based on statistical learning theory, which has emerged for feature identification and classification. In this paper, an integrated method is applied for process monitoring and fault diagnosis, which combines PCA for fault feature extraction and multiple SVMs for identification of different fault sources. This approach is verified and illustrated on the Tennessee Eastman benchmark process as a case study. Results show that the proposed PCA-SVMs method has good diagnosis capability and overall diagnosis correctness rate. 展开更多
关键词 principal component analysis multiple support vector machine process monitoring fault detection fault diagnosis.
下载PDF
Decentralized Fault Diagnosis of Large-scale Processes Using Multiblock Kernel Principal Component Analysis 被引量:23
3
作者 ZHANG Ying-Wei ZHOU Hong QIN S. Joe 《自动化学报》 EI CSCD 北大核心 2010年第4期593-597,共5页
关键词 分散系统 MBKPCA SPF PCA
下载PDF
An aligned mixture probabilistic principal component analysis for fault detection of multimode chemical processes 被引量:5
4
作者 杨雅伟 马玉鑫 +1 位作者 宋冰 侍洪波 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第8期1357-1363,共7页
A novel approach named aligned mixture probabilistic principal component analysis(AMPPCA) is proposed in this study for fault detection of multimode chemical processes. In order to exploit within-mode correlations,the... A novel approach named aligned mixture probabilistic principal component analysis(AMPPCA) is proposed in this study for fault detection of multimode chemical processes. In order to exploit within-mode correlations,the AMPPCA algorithm first estimates a statistical description for each operating mode by applying mixture probabilistic principal component analysis(MPPCA). As a comparison, the combined MPPCA is employed where monitoring results are softly integrated according to posterior probabilities of the test sample in each local model. For exploiting the cross-mode correlations, which may be useful but are inadvertently neglected due to separately held monitoring approaches, a global monitoring model is constructed by aligning all local models together. In this way, both within-mode and cross-mode correlations are preserved in this integrated space. Finally, the utility and feasibility of AMPPCA are demonstrated through a non-isothermal continuous stirred tank reactor and the TE benchmark process. 展开更多
关键词 Multimode process monitoring Mixture probabilistic principal component analysis Model alignment fault detection
下载PDF
Multivariate Statistical Process Monitoring of an Industrial Polypropylene Catalyzer Reactor with Component Analysis and Kernel Density Estimation 被引量:16
5
作者 熊丽 梁军 钱积新 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第4期524-532,共9页
Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the t... Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the two methods is that the components of PCA are still dependent while ICA has no orthogonality constraint and its latentvariables are independent. Process monitoring with PCA often supposes that process data or principal components is Gaussian distribution. However, this kind of constraint cannot be satisfied by several practical processes. To ex-tend the use of PCA, a nonparametric method is added to PCA to overcome the difficulty, and kernel density estimation (KDE) is rather a good choice. Though ICA is based on non-Gaussian distribution intormation, .KDE can help in the close monitoring of the data. Methods, such as PCA, ICA, PCA.with .KDE(KPCA), and ICA with KDE,(KICA), are demonstrated and. compared by applying them to a practical industnal Spheripol craft polypropylene catalyzer reactor instead of a laboratory emulator. 展开更多
关键词 multivariate statistical process monitoring principal component analysis kermel density estimation POLYPROPYLENE catalyzer reactor fault detection data-driven tools
下载PDF
A Kernel Time Structure Independent Component Analysis Method for Nonlinear Process Monitoring 被引量:1
6
作者 蔡连芳 田学民 张妮 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第Z1期1243-1253,共11页
Kernel independent component analysis(KICA) is a newly emerging nonlinear process monitoring method,which can extract mutually independent latent variables called independent components(ICs) from process variables. Ho... Kernel independent component analysis(KICA) is a newly emerging nonlinear process monitoring method,which can extract mutually independent latent variables called independent components(ICs) from process variables. However, when more than one IC have Gaussian distribution, it cannot extract the IC feature effectively and thus its monitoring performance will be degraded drastically. To solve such a problem, a kernel time structure independent component analysis(KTSICA) method is proposed for monitoring nonlinear process in this paper. The original process data are mapped into a feature space nonlinearly and then the whitened data are calculated in the feature space by the kernel trick. Subsequently, a time structure independent component analysis algorithm, which has no requirement for the distribution of ICs, is proposed to extract the IC feature.Finally, two monitoring statistics are built to detect process faults. When some fault is detected, a nonlinear fault identification method is developed to identify fault variables based on sensitivity analysis. The proposed monitoring method is applied in the Tennessee Eastman benchmark process. Applications demonstrate the superiority of KTSICA over KICA. 展开更多
关键词 process MONITORING INDEPENDENT component analysis KERNEL TRICK Time structure fault identification
下载PDF
Application of Kernel Independent Component Analysis for Multivariate Statistical Process Monitoring 被引量:3
7
作者 王丽 侍洪波 《Journal of Donghua University(English Edition)》 EI CAS 2009年第5期461-466,共6页
In this research, a new fault detection method based on kernel independent component analysis (kernel ICA) is developed. Kernel ICA is an improvement of independent component analysis (ICA), and is different from ... In this research, a new fault detection method based on kernel independent component analysis (kernel ICA) is developed. Kernel ICA is an improvement of independent component analysis (ICA), and is different from kernel principal component analysis (KPCA) proposed for nonlinear process monitoring. The basic idea of our approach is to use the kernel ICA to extract independent components efficiently and to combine the selected essential independent components with process monitoring techniques. 12 (the sum of the squared independent scores) and squared prediction error (SPE) charts are adopted as statistical quantities. The proposed monitoring method is applied to Tennessee Eastman process, and the simulation results clearly show the advantages of kernel ICA monitoring in comparison to ICA monitoring. 展开更多
关键词 process monitoring fault detection kernelindependent component analysis
下载PDF
Application of DC component to select fault branch in arc suppression coil grounding system 被引量:2
8
作者 Zhi-Jie WANG Yan-Wen WANG 《Journal of Coal Science & Engineering(China)》 2013年第3期396-401,共6页
When single phase earth fault occurs in the arc suppression coil grounding system, the amplitude of the transient capacitance current is high and decays fast, but the attenuation of the transient inductance current is... When single phase earth fault occurs in the arc suppression coil grounding system, the amplitude of the transient capacitance current is high and decays fast, but the attenuation of the transient inductance current is much slower. This paper analyses the DC component of fault branch, and has found it is much bigger than that of the normal branches in transient state. All the simulation results obtained from three compensation types, different fault time and different wave cycles show that the DC component of fault branch is much higher than that of those normal branches. These results verify the effectiveness of taking the DC component as the method of fault line selection in the arc suppression coil grounding system. 展开更多
关键词 DC component arc suppression coil fault line selection transient state
下载PDF
Nonlinear Statistical Process Monitoring Based on Control Charts with Memory Effect and Kernel Independent Component Analysis
9
作者 张曦 阎威武 +1 位作者 赵旭 邵惠鹤 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第5期563-571,共9页
A novel nonlinear combination process monitoring method was proposed based on techniques with memo- ry effect (multivariate exponentially weighted moving average (MEWMA)) and kernel independent component analysis ... A novel nonlinear combination process monitoring method was proposed based on techniques with memo- ry effect (multivariate exponentially weighted moving average (MEWMA)) and kernel independent component analysis (KICA). The method was developed for dealing with nonlinear issues and detecting small or moderate drifts in one or more process variables with autocorrelation. MEWMA charts use additional information from the past history of the process for keeping the memory effect of the process behavior trend. KICA is a recently devel- oped statistical technique for revealing hidden, nonlinear statistically independent factors that underlie sets of mea- surements and it is a two-phase algorithm., whitened kernel principal component analysis (KPCA) plus indepen- dent component analysis (ICA). The application to the fluid catalytic cracking unit (FCCU) simulated process in- dicates that the proposed combined method based on MEWMA and KICA can effectively capture the nonlinear rela- tionship and detect small drifts in process variables. Its performance significantly outperforms monitoring method based on ICA, MEWMA-ICA and KICA, especially for lonu-term performance deterioration. 展开更多
关键词 kernel independent component analysis (KICA) multivariate exponentially weighted moving average(MEWMA) NONLINEAR fault detection process monitoring fluid catalytic cracking unit (FCCU) process
下载PDF
Multimode Process Fault Detection Using Local Neighborhood Similarity Analysis 被引量:5
10
作者 邓晓刚 田学民 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第Z1期1260-1267,共8页
Traditional data driven fault detection methods assume unimodal distribution of process data so that they often perform not well in chemical process with multiple operating modes. In order to monitor the multimode che... Traditional data driven fault detection methods assume unimodal distribution of process data so that they often perform not well in chemical process with multiple operating modes. In order to monitor the multimode chemical process effectively, this paper presents a novel fault detection method based on local neighborhood similarity analysis(LNSA). In the proposed method, prior process knowledge is not required and only the multimode normal operation data are used to construct a reference dataset. For online monitoring of process state, LNSA applies moving window technique to obtain a current snapshot data window. Then neighborhood searching technique is used to acquire the corresponding local neighborhood data window from the reference dataset. Similarity analysis between snapshot and neighborhood data windows is performed, which includes the calculation of principal component analysis(PCA) similarity factor and distance similarity factor. The PCA similarity factor is to capture the change of data direction while the distance similarity factor is used for monitoring the shift of data center position. Based on these similarity factors, two monitoring statistics are built for multimode process fault detection. Finally a simulated continuous stirred tank system is used to demonstrate the effectiveness of the proposed method. The simulation results show that LNSA can detect multimode process changes effectively and performs better than traditional fault detection methods. 展开更多
关键词 MULTIMODE chemical process fault detection LOCAL NEIGHBORHOOD SIMILARITY ANALYSIS Principal component ANALYSIS
下载PDF
Improved process monitoring using the CUSUM and EWMA-based multiscale PCA fault detection framework 被引量:5
11
作者 Muhammad Nawaz Abdulhalim Shah Maulud +2 位作者 Haslinda Zabiri Syed Ali Ammar Taqvi Alamin Idris 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第1期253-265,共13页
Process monitoring techniques are of paramount importance in the chemical industry to improve both the product quality and plant safety.Small or incipient irregularities may lead to severe degradation in complex chemi... Process monitoring techniques are of paramount importance in the chemical industry to improve both the product quality and plant safety.Small or incipient irregularities may lead to severe degradation in complex chemical processes,and the conventional process monitoring techniques cannot detect these irregularities.In this study to improve the performance of monitoring,an online multiscale fault detection approach is proposed by integrating multiscale principal component analysis(MSPCA) with cumulative sum(CUSUM) and exponentially weighted moving average(EWMA) control charts.The new Hotelling's T~2 and square prediction error(SPE) based fault detection indices are proposed to detect the incipient irregularities in the process data.The performance of the proposed fault detection methods was tested for simulated data obtained from the CSTR system and compared to that of conventional PCA and MSPCA based methods.The results demonstrate that the proposed EWMA based MSPCA fault detection method was successful in detecting the faults.Moreover,a comparative study shows that the SPEEWMA monitoring index exhibits a better performance with lower values of missed detections ranging from 0% to 0.80% and false alarms ranging from 0% to 21.20%. 展开更多
关键词 Chemical process system CSTR fault detection Multiscale Principal component analysis process monitoring
下载PDF
Transient Fault Locating Method Based on Line Voltage and Zero-mode Current in Non-solidly Earthed Network 被引量:48
12
作者 ZHANG Linli XU Bingyin +1 位作者 XUE Yongduan GAO Houlei 《中国电机工程学报》 EI CSCD 北大核心 2012年第13期I0015-I0015,198,共1页
为解决配电网小电流接地故障时故障点定位困难的问题,提出一种基于线电压和零模电流暂态分量的故障定位新方法。该方法借助馈线自动化(feeder automation,FA)系统实现,不需要额外增加设备。馈线终端检测线电压和零模电流信号,利... 为解决配电网小电流接地故障时故障点定位困难的问题,提出一种基于线电压和零模电流暂态分量的故障定位新方法。该方法借助馈线自动化(feeder automation,FA)系统实现,不需要额外增加设备。馈线终端检测线电压和零模电流信号,利用暂态线电压的希尔伯特变换与暂态零模电流的乘积计算故障方向参数,FA主站根据故障点前后方向参数极性相反的特征确定故障点所在的线路区段。介绍基于线电压的小电流接地故障检测和接地故障相确定的算法。数字仿真与试验结果表明该方法是正确可行的。 展开更多
关键词 低压配电网络 瞬态故障 定位方法 接地电流 线电压 非直接接地系统 单相接地故障 馈线自动化
下载PDF
Multiple Local Reconstruction Model-based Fault Diagnosis for Continuous Processes 被引量:1
13
作者 赵春晖 李文卿 +1 位作者 孙优贤 高福荣 《自动化学报》 EI CSCD 北大核心 2013年第5期487-493,共7页
关键词 故障诊断方法 分解模型 连续过程 故障特征 重构 故障过程 分割算法 变量相关
下载PDF
Multivariate Statistical Process Monitoring and Control: Recent Developments and Applications to Chemical Industry 被引量:39
14
作者 梁军 钱积新 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第2期191-203,共13页
Multivariate statistical process monitoring and control (MSPM&C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares ... Multivariate statistical process monitoring and control (MSPM&C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares (PLS) are surveyed in this paper. The four-step procedure of performing MSPM&C for chemical process, modeling of processes, detecting abnormal events or faults, identifying the variable(s) responsible for the faults and diagnosing the source cause for the abnormal behavior, is analyzed. Several main research directions of MSPM&C reported in the literature are discussed, such as multi-way principal component analysis (MPCA) for batch process, statistical monitoring and control for nonlinear process, dynamic PCA and dynamic PLS, and on-line quality control by inferential models. Industrial applications of MSPM&C to several typical chemical processes, such as chemical reactor, distillation column, polymerization process, petroleum refinery units, are summarized. Finally, some concluding remarks and future considerations are made. 展开更多
关键词 multivariate statistical process monitoring and control (MSPM&C) fault detection and isolation (FDI) principal component analysis (PCA) partial least squares (PLS) quality control inferential model
下载PDF
A Multi-level Approach for Complex Fault Isolation Based on Structured Residuals 被引量:4
15
作者 叶鲁彬 石向荣 梁军 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第3期462-472,共11页
In industrial processes,there exist faults that have complex effect on process variables.Complex and simple faults are defined according to their effect dimensions.The conventional approaches based on structured resid... In industrial processes,there exist faults that have complex effect on process variables.Complex and simple faults are defined according to their effect dimensions.The conventional approaches based on structured residuals cannot isolate complex faults.This paper presents a multi-level strategy for complex fault isolation.An extraction procedure is employed to reduce the complex faults to simple ones and assign them to several levels.On each level,faults are isolated by their different responses in the structured residuals.Each residual is obtained insensitive to one fault but more sensitive to others.The faults on different levels are verified to have different residual responses and will not be confused.An entire incidence matrix containing residual response characteristics of all faults is obtained,based on which faults can be isolated.The proposed method is applied in the Tennessee Eastman process example,and the effectiveness and advantage are demonstrated. 展开更多
关键词 MULTI-LEVEL structured residuals principal component analysis complex fault isolation Tennessee Eastman process
下载PDF
A Fast Extraction Method in the Applicaton of UHV Transmission Line Fault Location
16
作者 Li Wang Jiale Suonan Zaibin Jiao 《Energy and Power Engineering》 2013年第4期1277-1283,共7页
To aim at the distribution parameter characteristics of UHV transmission line, this paper presents a fast extraction method (FE) to extract the accurate fundamentals of current and voltage from the UHV transmission li... To aim at the distribution parameter characteristics of UHV transmission line, this paper presents a fast extraction method (FE) to extract the accurate fundamentals of current and voltage from the UHV transmission line transient process, and locates the fault by utilizing two-end unsynchronized algorithm. The simulation result shows that this method has good performance of accuracy and stability, and has better location precision by comparing with results of one cycle Fourier algorithm. Therefore the method can efficiently improve the precision of fault location during the transient process, and makes the error of location results less than 0.5%. 展开更多
关键词 UHV FAST Extraction Method Matrix PENCIL transient process fault LOCATION
下载PDF
A dynamic-inner LSTM prediction method for key alarm variables forecasting in chemical process
17
作者 Yiming Bai Shuaiyu Xiang +1 位作者 Feifan Cheng Jinsong Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期266-276,共11页
With the increase in the complexity of industrial system, simply detecting and diagnosing a fault may be insufficient in some cases, and prognosing the fault ahead of time could have a certain necessity. Accurate pred... With the increase in the complexity of industrial system, simply detecting and diagnosing a fault may be insufficient in some cases, and prognosing the fault ahead of time could have a certain necessity. Accurate prediction of key alarm variables in chemical process can indicate the possible change to reduce the probability of abnormal conditions. According to the characteristics of chemical process data, this work proposed a key alarm variables prediction model in chemical process based on dynamic-inner principal component analysis(DiPCA) and long short-term memory(LSTM). DiPCA is used to extract the most dynamic components for prediction. While LSTM is used to learn the relationship and predict the key alarm variables. This work used a simulation data set and a real hydrogenation process data set for applications and explained the model validity from the essential characteristics. Comparison of results with different models shows that our model has better prediction accuracy and performance, which can provide the basis for fault prognosis and health management. 展开更多
关键词 fault prognosis process systems SAFETY PREDICTION Principal component analysis Long short term memory
下载PDF
On-line Batch Process Monitoring and Diagnosing Based on Fisher Discriminant Analysis
18
作者 赵旭 邵惠鹤 《Journal of Shanghai Jiaotong university(Science)》 EI 2006年第3期307-312,316,共7页
A new on-line batch process monitoring and diagnosing approach based on Fisher discriminant analysis (FDA) was proposed. This method does not need to predict the future observations of variables, so it is more sensi... A new on-line batch process monitoring and diagnosing approach based on Fisher discriminant analysis (FDA) was proposed. This method does not need to predict the future observations of variables, so it is more sensitive to fault detection and stronger implement for monitoring. In order to improve the monitoring performance, the variables trajectories of batch process are separated into several blocks. The key to the proposed approach for on-line monitoring is to calculate the distance of block data that project to low-dimension Fisher space between new batch and reference batch. Comparing the distance with the predefine threshold, it can be considered whether the batch process is normal or abnormal. Fault diagnosis is performed based on the weights in fault direction calculated by FDA. The proposed method was applied to the simulation model of fed-batch penicillin fermentation and the resuits were compared with those obtained using MPCA. The simulation results clearly show that the on-line monitoring method based on FDA is more efficient than the MPCA. 展开更多
关键词 batch process on-line process monitoring fault diagnosis Fisher discriminant analysis (FDA) multiway principal component analysis (MPCA)
下载PDF
流程生产安全数智化监测系统传感器故障诊断研究
19
作者 张建荣 张伟 +1 位作者 赵挺生 苗雨 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第4期34-41,共8页
为保障流程生产安全监测数据的准确性,提出1种结合核主元分析和累积残差贡献率法的故障诊断方法。首先提出“感知-汇聚-决策”的多层级数智化监控系统架构;针对感知层传感器,基于核主元分析构建故障检测模型并通过累积残差贡献率法定位... 为保障流程生产安全监测数据的准确性,提出1种结合核主元分析和累积残差贡献率法的故障诊断方法。首先提出“感知-汇聚-决策”的多层级数智化监控系统架构;针对感知层传感器,基于核主元分析构建故障检测模型并通过累积残差贡献率法定位故障传感器;以DYTG转炉厂连铸作业区进行实证分析。研究结果表明:该故障诊断方法在SPE指标上的平均检测率和平均误检率分别为95.28%和2.61%,在T^(2)指标上的平均检测率和平均误检率分别为84.36%和1.71%,且针对4种故障形式均能精准定位故障传感器。研究结果有助于降低监测系统的维护成本,提升流程生产安全管控水平。 展开更多
关键词 流程生产 传感器 故障诊断 核主元分析 累积残差
下载PDF
基于变压器故障量的分布式小电流接地选线方法
20
作者 李晓明 《电工技术》 2024年第1期76-78,共3页
提出并分析了一种基于变压器工频故障量的分布式选线方法和一种基于变压器暂态故障量的分布式选线方法。分析表明,工频故障量选线方法可用于中性点经消弧线圈接地系统欠补偿状态的一部分场景;暂态故障量选线方法比较的是变压器负荷侧暂... 提出并分析了一种基于变压器工频故障量的分布式选线方法和一种基于变压器暂态故障量的分布式选线方法。分析表明,工频故障量选线方法可用于中性点经消弧线圈接地系统欠补偿状态的一部分场景;暂态故障量选线方法比较的是变压器负荷侧暂态故障参考量与被保护线路暂态故障量,这两个暂态故障量具有近距离串行的电流关系,两者的幅值与波形变化都很小,因此具有受干扰小和可靠性高的优点。 展开更多
关键词 接地选线 分布式 变压器故障量 暂态故障量
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部