AIM: To explore the expression of transient receptor potential vanilloid 4(TRPV4) and its physiological meaning in mouse and rat gastric epithelia. METHODS: RT-PCR and immunochemistry were used to detect TRPV4 m RNA a...AIM: To explore the expression of transient receptor potential vanilloid 4(TRPV4) and its physiological meaning in mouse and rat gastric epithelia. METHODS: RT-PCR and immunochemistry were used to detect TRPV4 m RNA and protein expression in mouse stomach and a rat normal gastric epithelial cell line(RGE1-01), while Ca2+-imaging and electrophysiology were used to evaluate TRPV4 channel activity. ATP release was measured by a luciferin-luciferase assay. Gastric emptying was also compared between WT and TRPV4 knockout mice. RESULTS: TRPV4 m RNA and protein were detected in mouse tissues and RGE1-01 cells. A TRPV4-specific agonist(GSK1016790A) increased intracellular Ca2+ concentrations and/or evoked TRPV4-like current activities in WT mouse gastric epithelial cells andRGE1-01 cells, but not TRPV4 KO cells. GSK1016790 A or mechanical stimuli induced ATP release from RGE1-01 cells while TRPV4 knockout mice displayed delayed gastric emptying in vivo. CONCLUSION: TRPV4 is expressed in mouse and rat gastric epithelium and contributes to ATP release and gastric emptying.展开更多
Dorsal root ganglion (DRG) neurons from newborn Wistar rats cultured in vitro were pressurized with 20, 40, 80 or 120 mm Hg compressive Ioadings (1 mm Hg = 0.133 kPa) for 12, 24, 48 or 72 hours, respectively. The ...Dorsal root ganglion (DRG) neurons from newborn Wistar rats cultured in vitro were pressurized with 20, 40, 80 or 120 mm Hg compressive Ioadings (1 mm Hg = 0.133 kPa) for 12, 24, 48 or 72 hours, respectively. The 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide test showed that pressures less than 80 mm Hg had no obvious impact on the activity of DRG neurons. The protein expression levels of transient receptor potential vanilloid receptor 4 (TRPV4), transient receptor potential vanilloid receptor 1, transient receptor potential channel of melastatin type 8, and transient receptor potential subtype ankyrin 1 were assessed by western blot analysis. The mRNA expression of TRPV4 was assessed by real-time PCR. The results showed that sustained mechanical compression up-regulated TRPV4 mRNA and protein expression in the rat DRG neurons, in a time-dependent fashion. Similar changes were not found in the protein expression of transient receptor potential vanilloid receptor 1, transient receptor potential channel of melastatin type 8, and transient receptor potential subtype ankyrin 1. Images of cells using a laser scanning confocal microscope showed that the sustained mechanical pressure increased the number of responsive DRG neurons and was synergistic on the enhanced Ca^2+ responses to the TRPV4 phorbol ester agonist 4a-phorbo112, 13-didecanoate and hypotonic solutions. These findings demonstrate that sustained mechanical compressive loading in vitro increases the expression of TRPV4 mRNA and protein in DRG neurons and sensitizes TRPV4 Ca^2+ signals. Mechanical compression does not impact other ion channels in the transient receptor potential family.展开更多
The transient receptor potential melastatin 2 is a calcium-permeable cation channel member of the TRP family. Also known as an oxidative stress-activated channel, the transient receptor potential melastatin 2 gating m...The transient receptor potential melastatin 2 is a calcium-permeable cation channel member of the TRP family. Also known as an oxidative stress-activated channel, the transient receptor potential melastatin 2 gating mechanism is dependent on reactive oxygen species. In pathological conditions, transient receptor potential melastatin 2 is overactivated, leading to a Ca~(2+) influx that alters cell homeostasis and promotes cell death. The role of transient receptor potential melastatin 2 in neurodegenerative diseases, including Alzheimer's disease and ischemia, has already been described and reviewed. However, data on transient receptor potential melastatin 2 involvement in Parkinson's disease pathology has emerged only in recent years and the issue lacks review studies that focus specifically on this topic. The present review aims to elucidate the role of the transient receptor potential melastatin 2 channel in Parkinson's disease by reviewing, summarizing, and discussing the in vitro, in vivo, and human studies published until August 2022. Here we describe fourteen studies that evaluated the transient receptor potential melastatin 2 channel in Parkinson's disease. The Parkinson's disease model used, transient receptor potential melastatin 2 antagonist and genetic approaches, and the main outcomes reported were discussed. The studies described transient receptor potential melastatin 2 activation and enhanced expression in different Parkinson's disease models. They also evidenced protective and restorative effects when using transient receptor potential melastatin 2 antagonists, knockout, or silencing. This review provides a literature overview and suggests where there is a need for more research. As a perspective point, this review shows evidence that supports transient receptor potential melastatin 2 as a pharmacological target for Parkinson's disease in the future.展开更多
The transient receptor potential cation channel subfamily V member 1(TRPV1) provides the sensation of pain(nociception). However, it remains unknown whether TRPV1 is activated after peripheral nerve injury, or whe...The transient receptor potential cation channel subfamily V member 1(TRPV1) provides the sensation of pain(nociception). However, it remains unknown whether TRPV1 is activated after peripheral nerve injury, or whether activation of TRPV1 affects neural regeneration. In the present study, we established rat models of unilateral sciatic nerve crush injury, with or without pretreatment with AMG517(300 mg/kg), a TRPV1 antagonist, injected subcutaneously into the ipsilateral paw 60 minutes before injury. At 1 and 2 weeks after injury, we performed immunofluorescence staining of the sciatic nerve at the center of injury, at 0.3 cm proximal and distal to the injury site, and in the dorsal root ganglia. Our results showed that Wallerian degeneration occurred distal to the injury site, and neurite outgrowth and Schwann cell regeneration occurred proximal to the injury. The number of regenerating myelinated and unmyelinated nerve clusters was greater in the AMG517-pretreated rats than in the vehicle-treated group, most notably 2 weeks after injury. TRPV1 expression in the injured sciatic nerve and ipsilateral dorsal root ganglia was markedly greater than on the contralateral side. Pretreatment with AMG517 blocked this effect. These data indicate that TRPV1 is activated or overexpressed after sciatic nerve crush injury, and that blockade of TRPV1 may accelerate regeneration of the injured sciatic nerve.展开更多
目的评价甲泼尼龙对呼吸机相关性肺损伤(VILI)大鼠肺组织瞬时受体电位香草酸4 (TRPV4)/基质金属蛋白酶2/9(MMP-2/MMP-9)信号通路的影响。方法清洁级雄性SD大鼠100只,采用随机数字表法分为5组(n=20):对照组(C组)、机械通气组(V组)、甲泼...目的评价甲泼尼龙对呼吸机相关性肺损伤(VILI)大鼠肺组织瞬时受体电位香草酸4 (TRPV4)/基质金属蛋白酶2/9(MMP-2/MMP-9)信号通路的影响。方法清洁级雄性SD大鼠100只,采用随机数字表法分为5组(n=20):对照组(C组)、机械通气组(V组)、甲泼尼龙组(Mp组)、甲泼尼龙+GSK1016790A组(MpG组)、HC-067047组(H组)。C组不行机械通气,自主呼吸空气4 h;V组机械通气(RR 40次/min,VT 40 m L/kg,I∶E 1∶1,PEEP 0,Fi O221%) 4 h;Mp组在机械通气前20 min静脉输注甲泼尼龙10.0 mg/kg;MpG组在给予甲泼尼龙前20 min静脉输注GSK1016790A 0.025 mg/kg;H组机械通气前30 min静脉输注HC-067047 10.0 mg/kg。机械通气4 h时,检测支气管肺泡灌洗液(BALF)中白细胞介素-1(IL-1)、肿瘤坏死因子-α(TNF-α)、总蛋白浓度,测定肺通透指数(LPI)、肺湿/干质量比(W/D),观察肺组织病理学结果。Western blot法检测肺组织TRPV4、MMP-2、MMP-9的表达水平。结果与C组比较,V组和MpG组BALF中IL-1(ng/m L:84.56±5.35 vs. 144.85±9.39、121.56±7.69)、TNF-α(ng/m L:179.65±45.73 vs. 486.18±94.79、316.93±69.71)、总蛋白(mg/m L:321.29±28.76 vs. 687.78±65.78、476.39±46.67)升高,肺组织LPI [(2.47±0.17)×10^(-3)vs.(6.19±0.29)×10^(-3)、(4.24±0.25)×10^(-3)]、W/D比值(4.42±0.19 vs. 8.83±0.61、6.32±0.41)升高,TRPV4(1.85±0.25 vs.5.81±0.92、3.87±0.65)、MMP-2 (0.44±0.06 vs. 1.16±0.23、0.85±0.11)、MMP-9(0.19±0.03 vs. 0.46±0.09、0.34±0.07)表达上调(P<0.05);与V组比较,Mp组、MpG组和H组BALF中IL-1(ng/m L:144.85±9.39 vs. 89.78±5.91、121.56±7.69、94.23±6.78)、TNF-α(ng/m L:486.18±94.79 vs. 186.42±49.37、316.93±69.71、193.71±51.41)、总蛋白(mg/m L:687.78±65.78 vs. 348.78±31.52、476.39±46.67、359.68±36.12)降低,肺组织LPI [(6.19±0.29)×10^(-3)vs.(2.85±0.14)×10^(-3)、(4.24±0.25)×10^(-3)、(2.97±0.21)×10^(-3)]、W/D比值(8.83±0.61 vs. 4.75±0.22、6.32±0.41、4.82±0.25)降低,TRPV4(5.81±0.92 vs. 2.13±0.29、3.87±0.65、2.35±0.37)、MMP-2 (1.16±0.23 vs. 0.48±0.08、0.85±0.11、0.52±0.08)、MMP-9(0.46±0.09 vs. 0.22±0.04、0.34±0.07、0.25±0.05)表达下调(P<0.05),肺组织病理损伤减轻;与Mp组比较,MpG组BALF中IL-1 (ng/m L:89.78±5.91 vs. 121.56±7.69)、TNF-α(ng/m L:186.42±49.37 vs. 316.93±69.71)、总蛋白(mg/m L:348.78±31.52 vs. 476.39±46.67)升高,肺组织LPI [(2.85±0.14)×10^(-3)vs.(4.24±0.25)×10^(-3)]、W/D比值(4.75±0.22 vs. 6.32±0.41)升高,TRPV4(2.13±0.29 vs. 3.87±0.65)、MMP-2(0.48±0.08 vs. 0.85±0.11)、MMP-9(0.22±0.04 vs. 0.34±0.07)表达上调(P<0.05)。结论甲泼尼龙可减轻大鼠VILI,与其抑制TRPV4/MMP-2/MMP-9信号通路有关。展开更多
基金Supported by Grants from the University of Toyama and JSPS KAKENHI to Mihara H,No.26870214
文摘AIM: To explore the expression of transient receptor potential vanilloid 4(TRPV4) and its physiological meaning in mouse and rat gastric epithelia. METHODS: RT-PCR and immunochemistry were used to detect TRPV4 m RNA and protein expression in mouse stomach and a rat normal gastric epithelial cell line(RGE1-01), while Ca2+-imaging and electrophysiology were used to evaluate TRPV4 channel activity. ATP release was measured by a luciferin-luciferase assay. Gastric emptying was also compared between WT and TRPV4 knockout mice. RESULTS: TRPV4 m RNA and protein were detected in mouse tissues and RGE1-01 cells. A TRPV4-specific agonist(GSK1016790A) increased intracellular Ca2+ concentrations and/or evoked TRPV4-like current activities in WT mouse gastric epithelial cells andRGE1-01 cells, but not TRPV4 KO cells. GSK1016790 A or mechanical stimuli induced ATP release from RGE1-01 cells while TRPV4 knockout mice displayed delayed gastric emptying in vivo. CONCLUSION: TRPV4 is expressed in mouse and rat gastric epithelium and contributes to ATP release and gastric emptying.
基金the National Natural Science Foundation of China (General Program),No. 30872732the National Natural Science Foundation of China for Youths,No.81101453
文摘Dorsal root ganglion (DRG) neurons from newborn Wistar rats cultured in vitro were pressurized with 20, 40, 80 or 120 mm Hg compressive Ioadings (1 mm Hg = 0.133 kPa) for 12, 24, 48 or 72 hours, respectively. The 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide test showed that pressures less than 80 mm Hg had no obvious impact on the activity of DRG neurons. The protein expression levels of transient receptor potential vanilloid receptor 4 (TRPV4), transient receptor potential vanilloid receptor 1, transient receptor potential channel of melastatin type 8, and transient receptor potential subtype ankyrin 1 were assessed by western blot analysis. The mRNA expression of TRPV4 was assessed by real-time PCR. The results showed that sustained mechanical compression up-regulated TRPV4 mRNA and protein expression in the rat DRG neurons, in a time-dependent fashion. Similar changes were not found in the protein expression of transient receptor potential vanilloid receptor 1, transient receptor potential channel of melastatin type 8, and transient receptor potential subtype ankyrin 1. Images of cells using a laser scanning confocal microscope showed that the sustained mechanical pressure increased the number of responsive DRG neurons and was synergistic on the enhanced Ca^2+ responses to the TRPV4 phorbol ester agonist 4a-phorbo112, 13-didecanoate and hypotonic solutions. These findings demonstrate that sustained mechanical compressive loading in vitro increases the expression of TRPV4 mRNA and protein in DRG neurons and sensitizes TRPV4 Ca^2+ signals. Mechanical compression does not impact other ion channels in the transient receptor potential family.
基金funded by Coordination for the Improvement of Higher Education Personnel (CAPES,Brazil-Finance Code 001,to LRB)the S?o Paulo Research Foundation(FAPESP,Brazil,project#2018/07366-4)+1 种基金The National Council for Scientific and Technological Development (CNPq,Brazil,project#303006/2018-8,to LRB)a PhD fellowship from FAPESP under Grant Agreement No 2020/02109-3。
文摘The transient receptor potential melastatin 2 is a calcium-permeable cation channel member of the TRP family. Also known as an oxidative stress-activated channel, the transient receptor potential melastatin 2 gating mechanism is dependent on reactive oxygen species. In pathological conditions, transient receptor potential melastatin 2 is overactivated, leading to a Ca~(2+) influx that alters cell homeostasis and promotes cell death. The role of transient receptor potential melastatin 2 in neurodegenerative diseases, including Alzheimer's disease and ischemia, has already been described and reviewed. However, data on transient receptor potential melastatin 2 involvement in Parkinson's disease pathology has emerged only in recent years and the issue lacks review studies that focus specifically on this topic. The present review aims to elucidate the role of the transient receptor potential melastatin 2 channel in Parkinson's disease by reviewing, summarizing, and discussing the in vitro, in vivo, and human studies published until August 2022. Here we describe fourteen studies that evaluated the transient receptor potential melastatin 2 channel in Parkinson's disease. The Parkinson's disease model used, transient receptor potential melastatin 2 antagonist and genetic approaches, and the main outcomes reported were discussed. The studies described transient receptor potential melastatin 2 activation and enhanced expression in different Parkinson's disease models. They also evidenced protective and restorative effects when using transient receptor potential melastatin 2 antagonists, knockout, or silencing. This review provides a literature overview and suggests where there is a need for more research. As a perspective point, this review shows evidence that supports transient receptor potential melastatin 2 as a pharmacological target for Parkinson's disease in the future.
基金supported by the National Natural Science Foundation of China,No.81171178the Natural Science Foundation of Shanxi Province in China,No.2012011036-3Scientific Research Foundation of Shanxi Province of China for the Returned Overseas Chinese Scholars,No.2013011054-2
文摘The transient receptor potential cation channel subfamily V member 1(TRPV1) provides the sensation of pain(nociception). However, it remains unknown whether TRPV1 is activated after peripheral nerve injury, or whether activation of TRPV1 affects neural regeneration. In the present study, we established rat models of unilateral sciatic nerve crush injury, with or without pretreatment with AMG517(300 mg/kg), a TRPV1 antagonist, injected subcutaneously into the ipsilateral paw 60 minutes before injury. At 1 and 2 weeks after injury, we performed immunofluorescence staining of the sciatic nerve at the center of injury, at 0.3 cm proximal and distal to the injury site, and in the dorsal root ganglia. Our results showed that Wallerian degeneration occurred distal to the injury site, and neurite outgrowth and Schwann cell regeneration occurred proximal to the injury. The number of regenerating myelinated and unmyelinated nerve clusters was greater in the AMG517-pretreated rats than in the vehicle-treated group, most notably 2 weeks after injury. TRPV1 expression in the injured sciatic nerve and ipsilateral dorsal root ganglia was markedly greater than on the contralateral side. Pretreatment with AMG517 blocked this effect. These data indicate that TRPV1 is activated or overexpressed after sciatic nerve crush injury, and that blockade of TRPV1 may accelerate regeneration of the injured sciatic nerve.
文摘目的评价甲泼尼龙对呼吸机相关性肺损伤(VILI)大鼠肺组织瞬时受体电位香草酸4 (TRPV4)/基质金属蛋白酶2/9(MMP-2/MMP-9)信号通路的影响。方法清洁级雄性SD大鼠100只,采用随机数字表法分为5组(n=20):对照组(C组)、机械通气组(V组)、甲泼尼龙组(Mp组)、甲泼尼龙+GSK1016790A组(MpG组)、HC-067047组(H组)。C组不行机械通气,自主呼吸空气4 h;V组机械通气(RR 40次/min,VT 40 m L/kg,I∶E 1∶1,PEEP 0,Fi O221%) 4 h;Mp组在机械通气前20 min静脉输注甲泼尼龙10.0 mg/kg;MpG组在给予甲泼尼龙前20 min静脉输注GSK1016790A 0.025 mg/kg;H组机械通气前30 min静脉输注HC-067047 10.0 mg/kg。机械通气4 h时,检测支气管肺泡灌洗液(BALF)中白细胞介素-1(IL-1)、肿瘤坏死因子-α(TNF-α)、总蛋白浓度,测定肺通透指数(LPI)、肺湿/干质量比(W/D),观察肺组织病理学结果。Western blot法检测肺组织TRPV4、MMP-2、MMP-9的表达水平。结果与C组比较,V组和MpG组BALF中IL-1(ng/m L:84.56±5.35 vs. 144.85±9.39、121.56±7.69)、TNF-α(ng/m L:179.65±45.73 vs. 486.18±94.79、316.93±69.71)、总蛋白(mg/m L:321.29±28.76 vs. 687.78±65.78、476.39±46.67)升高,肺组织LPI [(2.47±0.17)×10^(-3)vs.(6.19±0.29)×10^(-3)、(4.24±0.25)×10^(-3)]、W/D比值(4.42±0.19 vs. 8.83±0.61、6.32±0.41)升高,TRPV4(1.85±0.25 vs.5.81±0.92、3.87±0.65)、MMP-2 (0.44±0.06 vs. 1.16±0.23、0.85±0.11)、MMP-9(0.19±0.03 vs. 0.46±0.09、0.34±0.07)表达上调(P<0.05);与V组比较,Mp组、MpG组和H组BALF中IL-1(ng/m L:144.85±9.39 vs. 89.78±5.91、121.56±7.69、94.23±6.78)、TNF-α(ng/m L:486.18±94.79 vs. 186.42±49.37、316.93±69.71、193.71±51.41)、总蛋白(mg/m L:687.78±65.78 vs. 348.78±31.52、476.39±46.67、359.68±36.12)降低,肺组织LPI [(6.19±0.29)×10^(-3)vs.(2.85±0.14)×10^(-3)、(4.24±0.25)×10^(-3)、(2.97±0.21)×10^(-3)]、W/D比值(8.83±0.61 vs. 4.75±0.22、6.32±0.41、4.82±0.25)降低,TRPV4(5.81±0.92 vs. 2.13±0.29、3.87±0.65、2.35±0.37)、MMP-2 (1.16±0.23 vs. 0.48±0.08、0.85±0.11、0.52±0.08)、MMP-9(0.46±0.09 vs. 0.22±0.04、0.34±0.07、0.25±0.05)表达下调(P<0.05),肺组织病理损伤减轻;与Mp组比较,MpG组BALF中IL-1 (ng/m L:89.78±5.91 vs. 121.56±7.69)、TNF-α(ng/m L:186.42±49.37 vs. 316.93±69.71)、总蛋白(mg/m L:348.78±31.52 vs. 476.39±46.67)升高,肺组织LPI [(2.85±0.14)×10^(-3)vs.(4.24±0.25)×10^(-3)]、W/D比值(4.75±0.22 vs. 6.32±0.41)升高,TRPV4(2.13±0.29 vs. 3.87±0.65)、MMP-2(0.48±0.08 vs. 0.85±0.11)、MMP-9(0.22±0.04 vs. 0.34±0.07)表达上调(P<0.05)。结论甲泼尼龙可减轻大鼠VILI,与其抑制TRPV4/MMP-2/MMP-9信号通路有关。