The arbitrary Lagrangian-Eulerian(ALE) adaptive remeshing technology and the HyperXtrude software of transient finite element simulations were used on analogue simulation of aluminium extrusion processing.The field ...The arbitrary Lagrangian-Eulerian(ALE) adaptive remeshing technology and the HyperXtrude software of transient finite element simulations were used on analogue simulation of aluminium extrusion processing.The field distributions of strain rate,stress,temperature and velocity of metal flow were obtained.The results are basically consistent with the experiment,which indicates that this method may successfully predict the defects in the actual extrusion process.展开更多
This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used...This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine in-take system.展开更多
The coupled models of LBM (Lattice Boltzmann Method) and RANS (Reynolds-Averaged Navier-Stokes) are more practical for the transient simulation of mixing processes at large spatial and temporal scales such as crud...The coupled models of LBM (Lattice Boltzmann Method) and RANS (Reynolds-Averaged Navier-Stokes) are more practical for the transient simulation of mixing processes at large spatial and temporal scales such as crude oil mixing in large-diameter storage tanks. To keep the efficiency of parallel computation of LBM, the RANS model should also be explicitly solved; whereas to keep the numerical stability the implicit method should be better for PANS model. This article explores the numerical stability of explicit methods in 2D cases on one hand, and on the other hand how to accelerate the computation of the coupled model of LBM and an implicitly solved RANS model in 3D cases. To ensure the numerical stability and meanwhile avoid the use of empirical artificial lim- itations on turbulent quantities in 2D cases, we investigated the impacts of collision models in LBM (LBGK, MRT) and the numerical schemes for convection terms (WENO, TVD) and production terms (FDM, NEQM) in an explic- itly solved standard k-e model. The combination of MRT and TVD or MRT and NEQM can be screened out for the 2D simulation of backward-facing step flow even at Re = 107. This scheme combination, however, may still not guarantee the numerical stability in 3D cases and hence much finer grids are required, which is not suitable for the simulation of industrial-scale processes.Then we proposed a new method to accelerate the coupled model of LBM with RANS (implicitly solved). When implemented on multiple GPUs, this new method can achieve 13.5-fold accelera- tion relative to the original coupled model and 40-fold acceleration compared to the traditional CFD simulation based on Finite Volume (FV) method accelerated by multiple CPUs. This study provides the basis for the transient flow simulation of larger spatial and temporal scales in industrial applications with LBM-RANS methods.展开更多
Determining the venting time of a gas trunk pipeline segment provides an important basis for formulating an emergency plan in the advent of unexpected accidents.As the natural gas venting process corresponds to the tr...Determining the venting time of a gas trunk pipeline segment provides an important basis for formulating an emergency plan in the advent of unexpected accidents.As the natural gas venting process corresponds to the transient flow,it is necessary to establish a transient hydraulic-thermal simulation model in order to determine the venting time.In this paper,based on two kinds of venting scenarios in which there is only one venting point in the venting system of a gas trunk pipeline segment—namely,where the venting point is either at one of the two ends or at the junction of two gas trunk pipeline segments—transient hydraulic-thermal simulation models are established.The models consist of gas flow governing equations,the gas state equation,gas physical property equations,initial conditions,and appropriate boundary conditions.The implicit central difference method is used to discretize the gas flow partial differential equations,and the trust-region-dogleg algorithm is used to solve the equations corresponding to each time step,in order to dynamically simulate the whole venting process.The judgment condition for the end of the venting process is that the average pressure of gas trunk pipeline segment is less than 0.11 MPa(actual pressure).Comparing the simulation results of the proposed model with those of the OLGA software and real operational data,we find that the venting time error is less than 10%.On this basis,a venting valve opening control principle is proposed,which prevents the venting noise from exceeded the specified noise value(85 d B)in the venting design of domestic gas pipeline projects.The established calculation model for venting time(dynamic simulation model)for a gas trunk pipeline segment and the proposed opening control principle of venting valve provide reference for the optimal operation of gas pipeline venting systems.展开更多
In this paper, two-dimensional (2D) transient simulations of an A1GaN/GaN high-electron-mobility transistor (HEMT) are carded out and analyzed to investigate the current collapse due to trapping effects. The coupl...In this paper, two-dimensional (2D) transient simulations of an A1GaN/GaN high-electron-mobility transistor (HEMT) are carded out and analyzed to investigate the current collapse due to trapping effects. The coupling effect of the trapping and thermal effects are taken into account in our simulation. The turn-on pulse gate-lag transient responses with different quiescent biases are obtained, and the pulsed current-voltage (l-V) curves are extracted from the transients. The experimental results of both gate-lag transient current and pulsed I-V curves are reproduced by the simulation, and the current collapse due to the trapping effect is explained from the view of physics based on the simulation results. In addition, the results show that bulk acceptor traps can influence the gate-lag transient characteristics of A1GaN/GaN HEMTs besides surface traps and that the thermal effect can accelerate the emission of captured electrons for traps. Pulse transient simulation is meaningful in analyzing the mechanism of dynamic current collapse, and the work in this paper will benefit the reliability study and model development of GaN-based devices.展开更多
This article presents a modeling and simulation method for transient thermal analyses of integrated circuits(ICs)using the original and voltage-in-current(VinC)latency insertion method(LIM).LIM-based algorithms are a ...This article presents a modeling and simulation method for transient thermal analyses of integrated circuits(ICs)using the original and voltage-in-current(VinC)latency insertion method(LIM).LIM-based algorithms are a set of fast transient simulation methods that solve electrical circuits in a leapfrog updating manner without relying on large matrix operations used in conventional Simulation Program with Integrated Circuit Emphasis(SPICE)-based methods which can significantly slow down the solution process.The conversion from the thermal to electrical model is performed first by using the analogy between heat and electrical conduction.Since electrical inductance has no thermal equivalence,a modified VinC LIM formulation is presented which removes the requirement of the insertion of fictitious inductors.Numerical examples are presented,which show that the modified VinC LIM formulation outperforms the basic LIM formulation,in terms of both stability and accuracy in the transient thermal simulation of ICs.展开更多
Three-dimensional transient numerical simulation of gas exchange process in a four-stroke motorcycle engine with a semi-spherical combustion chamber with two tilt valves was studied. Combination of the grid re-meshing...Three-dimensional transient numerical simulation of gas exchange process in a four-stroke motorcycle engine with a semi-spherical combustion chamber with two tilt valves was studied. Combination of the grid re-meshing method and the snapper technique made the valves move smoothly. The flow structure and pattern in a complete engine cycle were described in detail. Tumble ratios around the x-axis and y-axis were analyzed. Comparison of computed pressure with experimental pressure under motored condition revealed that the simulation had high calculation precision; CFD simulation can be regarded as an im-portant tool for resolving the complex aerodynamic behavior in motorcycle engines.展开更多
Although the Combined Cooing,Heating and Power System(hereinafter referred to as“CCHP”)improves the capacity utilization rate and energy utilization efficiency,single use of CCHP system cannot realize dynamic matchi...Although the Combined Cooing,Heating and Power System(hereinafter referred to as“CCHP”)improves the capacity utilization rate and energy utilization efficiency,single use of CCHP system cannot realize dynamic matching between supply and demand loads due to the unbalance features of the user’s cooling and heating loads.On the basis of user convenience and wide applicability of clean air energy,this paper tries to put forward a coupled CCHP system with combustion gas turbine and ASHP ordered power by heat,analyze trends of such parameters as gas consumption and power consumption of heat pump in line with adjustment of heating load proportion of combustion gas turbine,and optimize the system ratio in the method of annual costs and energy environmental benefit assessment.Based on the analysis of the hourly simulation and matching characteristics of the cold and hot load of the 100 thousand square meter building,it is found that the annual cost of the air source heat pump is low,but the energy and environmental benefits are poor.It will lead to 6.35%shortage of cooling load in summer.Combined with the evaluation method of primary energy consumption and zero carbon dioxide emission,the coupling system of CHHP and air source heat pump with 41%gas turbine load ratio is the best configuration.This system structure and optimization method can provide some reference for the development of CCHP coupling system.展开更多
A modeling method of regional integrated energy system based on bus method and transient simulation is proposed,and the system optimization is based on the dynamic balance of supply and demand in the whole year energy...A modeling method of regional integrated energy system based on bus method and transient simulation is proposed,and the system optimization is based on the dynamic balance of supply and demand in the whole year energy supply cycle.A CCHP systemof gas turbine coupled with ground source heat pump and electric refrigeration unit is constructed.The energy relationship of the systemis described by bus structure,and the transient calculationmodel is built on TRNSYS platform.The weighted sum of annual total cost saving rate,primary energy saving rate and environmental pollutant shadow cost saving rate is taken as the optimized objective function,and on the basis of annual dynamic balance,the Hooke-Jeeves algorithm is used for optimization of the system configuration.A complex commercial area in Beijing is taken as an example,and different weighting coefficients are set for optimization of the system configuration.The results show that,from the perspective of economy,environmental benefit and primary energy consumption,performance of the system increases and then decreases with rise of gas turbine power;under the simulated cooling/heating load,the maximum number of optimum configuration is seen in the combination of 35 kW gas turbine+723 kW GSHP and 1178 kW electric chiller;in comparison with traditional distributed system,the annual cost saving rate,primary energy saving rate and environmental pollutant shadow cost saving rate of the system are 29.4%,49.6%and 58.2%,respectively.展开更多
We have developed an energy balance equation for the universe. The two system parameters involved in the equation could be “fine-tuned” so that the predicted temperature histories all lead to what is observed in the...We have developed an energy balance equation for the universe. The two system parameters involved in the equation could be “fine-tuned” so that the predicted temperature histories all lead to what is observed in the present cosmic microwave background. We have shown that various combinations of these two parameters are possible;in particular, the present background temperature needs not be the remnant of a very hot temperature in the far distance past. We also solved for the propagation of vortex solitons in optical fibres as contrasting examples to show how electromagnetic wave could be transmitted in a particular waveform under strictly controlled conditions. To avoid singularity, all vortexes have a black centre. We conclude that while numerical techniques can be used to account for an infinite quantity, it is unlikely that such a quantity could exist in reality.展开更多
The performance of a newly designed tri-lobe industrial lobe pump of high capacity is simulated by using commercial CFD solver Ansys Fluent. A combination of user-defined-functions and meshing strategies is employed t...The performance of a newly designed tri-lobe industrial lobe pump of high capacity is simulated by using commercial CFD solver Ansys Fluent. A combination of user-defined-functions and meshing strategies is employed to capture the rotation of the lobes. The numerical model is validated by comparing the simulated results with the literature values. The processes of suction, displacement, compression and exhaust are accurately captured in the transient simulation. The fluid pressure value remains in the range of inlet pressure value till the processes of suction and displacement are over. The instantaneous process of compression is accurately captured in the simulation. The movement of a particular working chamber is traced along the gradual degree of lobe’s rotation. At five different degrees of lobe’s rotation, pressure contour plots are reported which clearly shows the pressure values inside the working chamber. Each pressure value inside the working chamber conforms to the particular process in which the working chamber is operating. Finally, the power requirement at the shaft of rotation is estimated from the simulated values. The estimated value of power requirement is 3.61 BHP FHP whereas the same calculated theoretically is 3 BHP FHP. The discrepancy is attributed to the assumption of symmetry of blower along the thickness.展开更多
A unified chemistry-aerosol-climate model is applied in this work to compare climate responses to changing concentrations of long-lived greenhouse gases (GHGs, CO2, CH4, N2O), tropospheric O3, and aerosols during th...A unified chemistry-aerosol-climate model is applied in this work to compare climate responses to changing concentrations of long-lived greenhouse gases (GHGs, CO2, CH4, N2O), tropospheric O3, and aerosols during the years 1951-2000. Concentrations of sulfate, nitrate, primary organic carbon (POA), secondary organic carbon (SOA), black carbon (BC) aerosols, and tropospheric 03 for the years 1950 and 2000 are obtained a priori by coupled chemistry-aerosol-GCM simulations, and then monthly concentrations are interpolated linearly between 1951 and 2000. The annual concentrations of GHGs are taken from the IPCC Third Assessment Report. BC aerosol is internally mixed with other aerosols. Model results indicate that the sinmlated climate change over 1951-2000 is sensitive to anthropogenic changes in atmospheric components. The predicted year 2000 global mean surface air temperature can differ by 0.8℃ with different forcings. Relative to the climate simulation without changes in GHGs, O3, and aerosols, anthropogenic forcings of SO4^2-, BC, BC+SO4^2-, BC+SO4^2- +POA, BC+SO4^2- +POA+SOA+NO3^-, O3, and GHGs are predicted to change the surface air temperature averaged over 1971-2000 in eastern China, respectively, by -0.40℃, +0.62℃, +0.18℃, +0.15℃, -0.78℃, +0.43℃, and +0.85℃, and to change the precipitation, respectively, by -0.21, +0.07, -0.03, +0.02, -0.24, -0.08, and +0.10 mm d^-1. The authors conclude that all major aerosols are as important as GHGs in influencing climate change in eastern China, and tropospheric O3 also needs to be included in studies of regional climate change in China.展开更多
To perform nuclear reactor simulations in a more realistic manner,the coupling scheme between neutronics and thermal-hydraulics was implemented in the HNET program for both steady-state and transient conditions.For si...To perform nuclear reactor simulations in a more realistic manner,the coupling scheme between neutronics and thermal-hydraulics was implemented in the HNET program for both steady-state and transient conditions.For simplicity,efficiency,and robustness,the matrixfree Newton/Krylov(MFNK)method was applied to the steady-state coupling calculation.In addition,the optimal perturbation size was adopted to further improve the convergence behavior of the MFNK.For the transient coupling simulation,the operator splitting method with a staggered time mesh was utilized to balance the computational cost and accuracy.Finally,VERA Problem 6 with power and boron perturbation and the NEACRP transient benchmark were simulated for analysis.The numerical results show that the MFNK method can outperform Picard iteration in terms of both efficiency and robustness for a wide range of problems.Furthermore,the reasonable agreement between the simulation results and the reference results for the NEACRP transient benchmark verifies the capability of predicting the behavior of the nuclear reactor.展开更多
Rainfall, as one of the most significant factors triggering the residual soil slope failure, leads to not only the reduction of soil shear strength, but also the increase of soil weight and the decrease of matric suct...Rainfall, as one of the most significant factors triggering the residual soil slope failure, leads to not only the reduction of soil shear strength, but also the increase of soil weight and the decrease of matric suction as well. All these modifications in soil properties have important influence on the slope stability. The water infiltration and redistribution inside the slope are the preconditions of the slope stability under rainfall conditions. Based on the numerical simulation via finite element method, the water infiltration process under rainfall conditions was studied in the present work. The emphases are the formation, distribution and dissipation of transient saturated zone. As for the calculation parameters, the SWCC and the saturated permeability have been determined by pressure plate test and variable head test respectively. The entire process(formation, development, dissipation) of the transient saturated zone was studied in detail. The variations of volumetric water content, matric suction and hydraulic gradient inside the slope, and the eventually raise of groundwater table were characterized and discussed, too. The results show that the major cause of the formation of transient saturated zone is ascribed to the fact that the exudation velocity of rainwater on the wetting front is less than the infiltration velocity of rainfall; as a result, the water content of the soil increases. On the other hand, the formation and extension of transient saturated zone have a close relationship with rainfall intensity and duration. The results can help the geotechnical engineers for the deeper understanding of the failure of residual slope under rainfall condition. It is also suggested that the proper drainage system in the slope may be the cost-effective slope failure mitigation method.展开更多
Wind-driven rain(WDR)has a significant influence on the hygrothermal performance,durability,and energy consumption of building components.The calculation of WDR loads using semi-empirical models has been incorporated ...Wind-driven rain(WDR)has a significant influence on the hygrothermal performance,durability,and energy consumption of building components.The calculation of WDR loads using semi-empirical models has been incorporated into the boundary conditions of coupled heat and moisture transfer models.However,prior research often relied on fixed WDR absorption ratio,which fail to accurately capture the water absorption characteristics of porous building materials under rainfall scenarios.Therefore,this study aims to investigate the coupled heat and moisture transfer of exterior walls under dynamic WDR boundary conditions,utilizing an empirically obtained WDR absorption ratio model based on field measurements.The developed coupled heat and moisture transfer model is validated against the HAMSTAD project.The findings reveal that the total WDR flux calculated with the dynamic WDR boundary is lower than that obtained with the fixed WDR boundary,with greater disparities observed in orientations experiencing higher WDR loads.The variations in moisture flow significantly impact the surface temperature and relative humidity of the walls,influencing the calculation of cooling and heating loads by different models.Compared to the transient heat transfer model,the coupled heat and moisture transfer model incorporating dynamic WDR boundary exhibits maximum increases of 17.6%and 16.2%in cooling and heating loads,respectively.The dynamic WDR boundary conditions provide more precise numerical values for surface moisture flux,offering valuable insights for the thermal design of building enclosures and load calculations for HVAC systems.展开更多
The spatiotemporal distribution characteristics of the regression rate are crucial aspects of the research on Hybrid Rocket Motor(HRM). This study presents a pioneering effort in achieving a comprehensive numerical si...The spatiotemporal distribution characteristics of the regression rate are crucial aspects of the research on Hybrid Rocket Motor(HRM). This study presents a pioneering effort in achieving a comprehensive numerical simulation of fluid dynamics and heat transfer in both the fluid and solid regions throughout the entire operation of an HRM. To accomplish this, a dynamic grid technique that incorporates fluid–solid coupling is utilized. To validate the precision of the numerical simulations, a firing test is conducted, with embedded thermocouple probes being used to measure the inner temperature of the fuel grain. The temperature variations in the solid fuel obtained from both experiment and simulations show good agreement. The maximum combustion temperature and average thrust obtained from the simulations are found to deviate from the experimental results by only 3.3% and 2.4%, respectively. Thus, it can be demonstrated that transient numerical simulations accurately capture the fluid–solid coupling characteristics and transient regression rate. The dynamic simulation results of inner flow field and solid region throughout the entire working stage reveal that the presence of vortices enhances the blending of combustion gases and improves the regression rate at both the front and rear ends of the fuel grain. In addition, oscillations of the regression rate obtained in the simulation can also be well corresponded with the corrugated surface observed in the experiment. Furthermore, the zero-dimension regression rate formula and the formula describing the axial location dependence of the regression rate are fitted from the simulation results, with the corresponding coefficients of determination(R^(2)) of 0.9765 and 0.9298, respectively.This research serves as a reference for predicting the performance of HRM with gas oxygen and polyethylene, and presents a credible way for investigating the spatiotemporal distribution of the regression rate.展开更多
Due to the large eddy currents at the ends of the quadrupole magnets for CSNS/RCS, the magnetic field properties and the heat generation are of great concern. In this paper, we take transient electromagnetic simulatio...Due to the large eddy currents at the ends of the quadrupole magnets for CSNS/RCS, the magnetic field properties and the heat generation are of great concern. In this paper, we take transient electromagnetic simulation and make use of the eddy current loss from the transient electromagnetic results to perform thermal analysis. Through analysis of the simulated results, the magnetic field dynamic properties of these magnets and a temperature rise are achieved. Finally, the accuracy of the thermal analysis is confirmed by a test of the prototype quadrupole magnet of the RCS.展开更多
In order to alleviate the pressure of experi- mental research of turbocharged diesel engine under transient operations, a whole process simulation platform for turbocharged diesel engine under transient operations was...In order to alleviate the pressure of experi- mental research of turbocharged diesel engine under transient operations, a whole process simulation platform for turbocharged diesel engine under transient operations was established based on the multi-software coupling technologies of Matlab/Simulink, GT-Power, STAR-CD and artificial neural network. Aimed at the contradiction of NOx and soot emission control with exhaust gas recirculation (EGR) of turbocharged diesel engine under transient operations, on this simulation platform, a transient EGR valve control strategy was proposed, which adjusted the EGR valve in adjacent level based on the feedback of its opening according soot control limit under transient operations. Simulation and experimental results prove that the transient emission optimization effect of this control strategy is obvious. On the one hand, compared with the previous control strategy, which closed the EGR valve during the whole transient operations, soot emission is slightly increased by 9.5%, but it is still 9% lower than the control limit. On the other hand, compared with the previous control strategy, NOx transient emission is reduced by 44%.展开更多
In this paper,experiment results about East Asia climate from five CGCMs are described.The ability of the models to simulate present climate and the simulated response to increased carbon dioxide are both covered.The ...In this paper,experiment results about East Asia climate from five CGCMs are described.The ability of the models to simulate present climate and the simulated response to increased carbon dioxide are both covered.The results indicate that all models show substantial changes in climate when carbon dioxide concentrations are doubled.In particular,the strong surface warming at high latitudes in winter and the significant increase of summer precipitation in the monsoon area are produced by all models.Regional evaluation results show that these five CGCMs are particularly good in simulating spatial distribution of present climate.The main characteristics of the seasonal mean H500,SAT, MSLP field can be simulated by most CGCMs.But there are significant systematic errors in SAT, MSLP,HS00 fields in most models.On the whole,DKRZ OPYC is the best in simulating the present climate in East Asia.展开更多
The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–sol...The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–solid coupling is considered between the solid grain surface and combustion gas.Dynamic mesh is used to simulate the regression process of the solid fuel surface. Based on this model, numerical simulations on a H2O2/HTPB(hydroxyl-terminated polybutadiene) hybrid motor have been performed in the flow control process. The simulation results show that under the step change of the oxidizer mass flow rate condition, the regression rate cannot reach a stable value instantly because the flow field requires a short time period to adjust. The regression rate increases with the linear gain of oxidizer mass flow rate, and has a higher slope than the relative inlet function of oxidizer flow rate. A shorter regulation time can cause a higher regression rate during regulation process. The results also show that transient calculation can better simulate the instantaneous regression rate in the operation process.展开更多
基金Project (2009A080205003) supported by the Major Science and Technology Project of Guangdong Province,ChinaProject (30815009) supported by the Foundation of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,China
文摘The arbitrary Lagrangian-Eulerian(ALE) adaptive remeshing technology and the HyperXtrude software of transient finite element simulations were used on analogue simulation of aluminium extrusion processing.The field distributions of strain rate,stress,temperature and velocity of metal flow were obtained.The results are basically consistent with the experiment,which indicates that this method may successfully predict the defects in the actual extrusion process.
文摘This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine in-take system.
基金Supported by the National Key Research and Development Program of China(2017YFB0602500)National Natural Science Foundation of China(91634203 and91434121)Chinese Academy of Sciences(122111KYSB20150003)
文摘The coupled models of LBM (Lattice Boltzmann Method) and RANS (Reynolds-Averaged Navier-Stokes) are more practical for the transient simulation of mixing processes at large spatial and temporal scales such as crude oil mixing in large-diameter storage tanks. To keep the efficiency of parallel computation of LBM, the RANS model should also be explicitly solved; whereas to keep the numerical stability the implicit method should be better for PANS model. This article explores the numerical stability of explicit methods in 2D cases on one hand, and on the other hand how to accelerate the computation of the coupled model of LBM and an implicitly solved RANS model in 3D cases. To ensure the numerical stability and meanwhile avoid the use of empirical artificial lim- itations on turbulent quantities in 2D cases, we investigated the impacts of collision models in LBM (LBGK, MRT) and the numerical schemes for convection terms (WENO, TVD) and production terms (FDM, NEQM) in an explic- itly solved standard k-e model. The combination of MRT and TVD or MRT and NEQM can be screened out for the 2D simulation of backward-facing step flow even at Re = 107. This scheme combination, however, may still not guarantee the numerical stability in 3D cases and hence much finer grids are required, which is not suitable for the simulation of industrial-scale processes.Then we proposed a new method to accelerate the coupled model of LBM with RANS (implicitly solved). When implemented on multiple GPUs, this new method can achieve 13.5-fold accelera- tion relative to the original coupled model and 40-fold acceleration compared to the traditional CFD simulation based on Finite Volume (FV) method accelerated by multiple CPUs. This study provides the basis for the transient flow simulation of larger spatial and temporal scales in industrial applications with LBM-RANS methods.
基金supported by the National Natural Science Foundation of China(Grant No.52174064)
文摘Determining the venting time of a gas trunk pipeline segment provides an important basis for formulating an emergency plan in the advent of unexpected accidents.As the natural gas venting process corresponds to the transient flow,it is necessary to establish a transient hydraulic-thermal simulation model in order to determine the venting time.In this paper,based on two kinds of venting scenarios in which there is only one venting point in the venting system of a gas trunk pipeline segment—namely,where the venting point is either at one of the two ends or at the junction of two gas trunk pipeline segments—transient hydraulic-thermal simulation models are established.The models consist of gas flow governing equations,the gas state equation,gas physical property equations,initial conditions,and appropriate boundary conditions.The implicit central difference method is used to discretize the gas flow partial differential equations,and the trust-region-dogleg algorithm is used to solve the equations corresponding to each time step,in order to dynamically simulate the whole venting process.The judgment condition for the end of the venting process is that the average pressure of gas trunk pipeline segment is less than 0.11 MPa(actual pressure).Comparing the simulation results of the proposed model with those of the OLGA software and real operational data,we find that the venting time error is less than 10%.On this basis,a venting valve opening control principle is proposed,which prevents the venting noise from exceeded the specified noise value(85 d B)in the venting design of domestic gas pipeline projects.The established calculation model for venting time(dynamic simulation model)for a gas trunk pipeline segment and the proposed opening control principle of venting valve provide reference for the optimal operation of gas pipeline venting systems.
基金Project supported by the National Natural Science Foundation of China(Grant No.61306113)
文摘In this paper, two-dimensional (2D) transient simulations of an A1GaN/GaN high-electron-mobility transistor (HEMT) are carded out and analyzed to investigate the current collapse due to trapping effects. The coupling effect of the trapping and thermal effects are taken into account in our simulation. The turn-on pulse gate-lag transient responses with different quiescent biases are obtained, and the pulsed current-voltage (l-V) curves are extracted from the transients. The experimental results of both gate-lag transient current and pulsed I-V curves are reproduced by the simulation, and the current collapse due to the trapping effect is explained from the view of physics based on the simulation results. In addition, the results show that bulk acceptor traps can influence the gate-lag transient characteristics of A1GaN/GaN HEMTs besides surface traps and that the thermal effect can accelerate the emission of captured electrons for traps. Pulse transient simulation is meaningful in analyzing the mechanism of dynamic current collapse, and the work in this paper will benefit the reliability study and model development of GaN-based devices.
基金This work was supported by the Fundamental Research Grant Scheme(FRGS)sponsored by the Ministry of Higher Education,Malaysia under Grant No.FRGS/1/2020/TK0/USM/02/7.
文摘This article presents a modeling and simulation method for transient thermal analyses of integrated circuits(ICs)using the original and voltage-in-current(VinC)latency insertion method(LIM).LIM-based algorithms are a set of fast transient simulation methods that solve electrical circuits in a leapfrog updating manner without relying on large matrix operations used in conventional Simulation Program with Integrated Circuit Emphasis(SPICE)-based methods which can significantly slow down the solution process.The conversion from the thermal to electrical model is performed first by using the analogy between heat and electrical conduction.Since electrical inductance has no thermal equivalence,a modified VinC LIM formulation is presented which removes the requirement of the insertion of fictitious inductors.Numerical examples are presented,which show that the modified VinC LIM formulation outperforms the basic LIM formulation,in terms of both stability and accuracy in the transient thermal simulation of ICs.
文摘Three-dimensional transient numerical simulation of gas exchange process in a four-stroke motorcycle engine with a semi-spherical combustion chamber with two tilt valves was studied. Combination of the grid re-meshing method and the snapper technique made the valves move smoothly. The flow structure and pattern in a complete engine cycle were described in detail. Tumble ratios around the x-axis and y-axis were analyzed. Comparison of computed pressure with experimental pressure under motored condition revealed that the simulation had high calculation precision; CFD simulation can be regarded as an im-portant tool for resolving the complex aerodynamic behavior in motorcycle engines.
基金This research was funded by the research on rapid modeling methods for integrated energy systems,Grant No.SGTYHT/17-JS-204.
文摘Although the Combined Cooing,Heating and Power System(hereinafter referred to as“CCHP”)improves the capacity utilization rate and energy utilization efficiency,single use of CCHP system cannot realize dynamic matching between supply and demand loads due to the unbalance features of the user’s cooling and heating loads.On the basis of user convenience and wide applicability of clean air energy,this paper tries to put forward a coupled CCHP system with combustion gas turbine and ASHP ordered power by heat,analyze trends of such parameters as gas consumption and power consumption of heat pump in line with adjustment of heating load proportion of combustion gas turbine,and optimize the system ratio in the method of annual costs and energy environmental benefit assessment.Based on the analysis of the hourly simulation and matching characteristics of the cold and hot load of the 100 thousand square meter building,it is found that the annual cost of the air source heat pump is low,but the energy and environmental benefits are poor.It will lead to 6.35%shortage of cooling load in summer.Combined with the evaluation method of primary energy consumption and zero carbon dioxide emission,the coupling system of CHHP and air source heat pump with 41%gas turbine load ratio is the best configuration.This system structure and optimization method can provide some reference for the development of CCHP coupling system.
基金This research was funded by the Research on Rapid Modeling Methods for Integrated Energy Systems,Grant No.SGTYHT/17-JS-204.
文摘A modeling method of regional integrated energy system based on bus method and transient simulation is proposed,and the system optimization is based on the dynamic balance of supply and demand in the whole year energy supply cycle.A CCHP systemof gas turbine coupled with ground source heat pump and electric refrigeration unit is constructed.The energy relationship of the systemis described by bus structure,and the transient calculationmodel is built on TRNSYS platform.The weighted sum of annual total cost saving rate,primary energy saving rate and environmental pollutant shadow cost saving rate is taken as the optimized objective function,and on the basis of annual dynamic balance,the Hooke-Jeeves algorithm is used for optimization of the system configuration.A complex commercial area in Beijing is taken as an example,and different weighting coefficients are set for optimization of the system configuration.The results show that,from the perspective of economy,environmental benefit and primary energy consumption,performance of the system increases and then decreases with rise of gas turbine power;under the simulated cooling/heating load,the maximum number of optimum configuration is seen in the combination of 35 kW gas turbine+723 kW GSHP and 1178 kW electric chiller;in comparison with traditional distributed system,the annual cost saving rate,primary energy saving rate and environmental pollutant shadow cost saving rate of the system are 29.4%,49.6%and 58.2%,respectively.
文摘We have developed an energy balance equation for the universe. The two system parameters involved in the equation could be “fine-tuned” so that the predicted temperature histories all lead to what is observed in the present cosmic microwave background. We have shown that various combinations of these two parameters are possible;in particular, the present background temperature needs not be the remnant of a very hot temperature in the far distance past. We also solved for the propagation of vortex solitons in optical fibres as contrasting examples to show how electromagnetic wave could be transmitted in a particular waveform under strictly controlled conditions. To avoid singularity, all vortexes have a black centre. We conclude that while numerical techniques can be used to account for an infinite quantity, it is unlikely that such a quantity could exist in reality.
文摘The performance of a newly designed tri-lobe industrial lobe pump of high capacity is simulated by using commercial CFD solver Ansys Fluent. A combination of user-defined-functions and meshing strategies is employed to capture the rotation of the lobes. The numerical model is validated by comparing the simulated results with the literature values. The processes of suction, displacement, compression and exhaust are accurately captured in the transient simulation. The fluid pressure value remains in the range of inlet pressure value till the processes of suction and displacement are over. The instantaneous process of compression is accurately captured in the simulation. The movement of a particular working chamber is traced along the gradual degree of lobe’s rotation. At five different degrees of lobe’s rotation, pressure contour plots are reported which clearly shows the pressure values inside the working chamber. Each pressure value inside the working chamber conforms to the particular process in which the working chamber is operating. Finally, the power requirement at the shaft of rotation is estimated from the simulated values. The estimated value of power requirement is 3.61 BHP FHP whereas the same calculated theoretically is 3 BHP FHP. The discrepancy is attributed to the assumption of symmetry of blower along the thickness.
基金supported by the National Natural Science Foundation of China(Grant Nos90711004 and 40825016)the Chinese Academy of Sciences(Grant Nos:KZCX2-YW-Q1-02,KZCX2-YW-Q11-03)
文摘A unified chemistry-aerosol-climate model is applied in this work to compare climate responses to changing concentrations of long-lived greenhouse gases (GHGs, CO2, CH4, N2O), tropospheric O3, and aerosols during the years 1951-2000. Concentrations of sulfate, nitrate, primary organic carbon (POA), secondary organic carbon (SOA), black carbon (BC) aerosols, and tropospheric 03 for the years 1950 and 2000 are obtained a priori by coupled chemistry-aerosol-GCM simulations, and then monthly concentrations are interpolated linearly between 1951 and 2000. The annual concentrations of GHGs are taken from the IPCC Third Assessment Report. BC aerosol is internally mixed with other aerosols. Model results indicate that the sinmlated climate change over 1951-2000 is sensitive to anthropogenic changes in atmospheric components. The predicted year 2000 global mean surface air temperature can differ by 0.8℃ with different forcings. Relative to the climate simulation without changes in GHGs, O3, and aerosols, anthropogenic forcings of SO4^2-, BC, BC+SO4^2-, BC+SO4^2- +POA, BC+SO4^2- +POA+SOA+NO3^-, O3, and GHGs are predicted to change the surface air temperature averaged over 1971-2000 in eastern China, respectively, by -0.40℃, +0.62℃, +0.18℃, +0.15℃, -0.78℃, +0.43℃, and +0.85℃, and to change the precipitation, respectively, by -0.21, +0.07, -0.03, +0.02, -0.24, -0.08, and +0.10 mm d^-1. The authors conclude that all major aerosols are as important as GHGs in influencing climate change in eastern China, and tropospheric O3 also needs to be included in studies of regional climate change in China.
基金supported by the China Postdoctoral Science Foundation(No.2021M703045)the National Natural Science Foundation of China(No.12075067)the National Key R&D Program of China(No.2018YFE0180900).
文摘To perform nuclear reactor simulations in a more realistic manner,the coupling scheme between neutronics and thermal-hydraulics was implemented in the HNET program for both steady-state and transient conditions.For simplicity,efficiency,and robustness,the matrixfree Newton/Krylov(MFNK)method was applied to the steady-state coupling calculation.In addition,the optimal perturbation size was adopted to further improve the convergence behavior of the MFNK.For the transient coupling simulation,the operator splitting method with a staggered time mesh was utilized to balance the computational cost and accuracy.Finally,VERA Problem 6 with power and boron perturbation and the NEACRP transient benchmark were simulated for analysis.The numerical results show that the MFNK method can outperform Picard iteration in terms of both efficiency and robustness for a wide range of problems.Furthermore,the reasonable agreement between the simulation results and the reference results for the NEACRP transient benchmark verifies the capability of predicting the behavior of the nuclear reactor.
基金Projects(51508040,51578079,51678074,51678073)supported by the National Natural Science Foundation of ChinaProject(KFJ160601)supported by the Open Fund of Engineering Laboratory of Spatial Information Technology of Highway Geological Disaster Early Warning in Hunan Province(Changsha University of Science and Technology),China
文摘Rainfall, as one of the most significant factors triggering the residual soil slope failure, leads to not only the reduction of soil shear strength, but also the increase of soil weight and the decrease of matric suction as well. All these modifications in soil properties have important influence on the slope stability. The water infiltration and redistribution inside the slope are the preconditions of the slope stability under rainfall conditions. Based on the numerical simulation via finite element method, the water infiltration process under rainfall conditions was studied in the present work. The emphases are the formation, distribution and dissipation of transient saturated zone. As for the calculation parameters, the SWCC and the saturated permeability have been determined by pressure plate test and variable head test respectively. The entire process(formation, development, dissipation) of the transient saturated zone was studied in detail. The variations of volumetric water content, matric suction and hydraulic gradient inside the slope, and the eventually raise of groundwater table were characterized and discussed, too. The results show that the major cause of the formation of transient saturated zone is ascribed to the fact that the exudation velocity of rainwater on the wetting front is less than the infiltration velocity of rainfall; as a result, the water content of the soil increases. On the other hand, the formation and extension of transient saturated zone have a close relationship with rainfall intensity and duration. The results can help the geotechnical engineers for the deeper understanding of the failure of residual slope under rainfall condition. It is also suggested that the proper drainage system in the slope may be the cost-effective slope failure mitigation method.
基金The work described in this paper was financially supported by the Shanghai Municipality Natural Science Foundation(No.21ZR1434400).
文摘Wind-driven rain(WDR)has a significant influence on the hygrothermal performance,durability,and energy consumption of building components.The calculation of WDR loads using semi-empirical models has been incorporated into the boundary conditions of coupled heat and moisture transfer models.However,prior research often relied on fixed WDR absorption ratio,which fail to accurately capture the water absorption characteristics of porous building materials under rainfall scenarios.Therefore,this study aims to investigate the coupled heat and moisture transfer of exterior walls under dynamic WDR boundary conditions,utilizing an empirically obtained WDR absorption ratio model based on field measurements.The developed coupled heat and moisture transfer model is validated against the HAMSTAD project.The findings reveal that the total WDR flux calculated with the dynamic WDR boundary is lower than that obtained with the fixed WDR boundary,with greater disparities observed in orientations experiencing higher WDR loads.The variations in moisture flow significantly impact the surface temperature and relative humidity of the walls,influencing the calculation of cooling and heating loads by different models.Compared to the transient heat transfer model,the coupled heat and moisture transfer model incorporating dynamic WDR boundary exhibits maximum increases of 17.6%and 16.2%in cooling and heating loads,respectively.The dynamic WDR boundary conditions provide more precise numerical values for surface moisture flux,offering valuable insights for the thermal design of building enclosures and load calculations for HVAC systems.
基金supported by the National Natural Science Foundation of China (No.U20B2034).
文摘The spatiotemporal distribution characteristics of the regression rate are crucial aspects of the research on Hybrid Rocket Motor(HRM). This study presents a pioneering effort in achieving a comprehensive numerical simulation of fluid dynamics and heat transfer in both the fluid and solid regions throughout the entire operation of an HRM. To accomplish this, a dynamic grid technique that incorporates fluid–solid coupling is utilized. To validate the precision of the numerical simulations, a firing test is conducted, with embedded thermocouple probes being used to measure the inner temperature of the fuel grain. The temperature variations in the solid fuel obtained from both experiment and simulations show good agreement. The maximum combustion temperature and average thrust obtained from the simulations are found to deviate from the experimental results by only 3.3% and 2.4%, respectively. Thus, it can be demonstrated that transient numerical simulations accurately capture the fluid–solid coupling characteristics and transient regression rate. The dynamic simulation results of inner flow field and solid region throughout the entire working stage reveal that the presence of vortices enhances the blending of combustion gases and improves the regression rate at both the front and rear ends of the fuel grain. In addition, oscillations of the regression rate obtained in the simulation can also be well corresponded with the corrugated surface observed in the experiment. Furthermore, the zero-dimension regression rate formula and the formula describing the axial location dependence of the regression rate are fitted from the simulation results, with the corresponding coefficients of determination(R^(2)) of 0.9765 and 0.9298, respectively.This research serves as a reference for predicting the performance of HRM with gas oxygen and polyethylene, and presents a credible way for investigating the spatiotemporal distribution of the regression rate.
文摘Due to the large eddy currents at the ends of the quadrupole magnets for CSNS/RCS, the magnetic field properties and the heat generation are of great concern. In this paper, we take transient electromagnetic simulation and make use of the eddy current loss from the transient electromagnetic results to perform thermal analysis. Through analysis of the simulated results, the magnetic field dynamic properties of these magnets and a temperature rise are achieved. Finally, the accuracy of the thermal analysis is confirmed by a test of the prototype quadrupole magnet of the RCS.
基金This work was supported by the National Basic Research Program of China (No. 2013CB228402) and the National Natural Science Foundation of China (Grant No. 50976046).
文摘In order to alleviate the pressure of experi- mental research of turbocharged diesel engine under transient operations, a whole process simulation platform for turbocharged diesel engine under transient operations was established based on the multi-software coupling technologies of Matlab/Simulink, GT-Power, STAR-CD and artificial neural network. Aimed at the contradiction of NOx and soot emission control with exhaust gas recirculation (EGR) of turbocharged diesel engine under transient operations, on this simulation platform, a transient EGR valve control strategy was proposed, which adjusted the EGR valve in adjacent level based on the feedback of its opening according soot control limit under transient operations. Simulation and experimental results prove that the transient emission optimization effect of this control strategy is obvious. On the one hand, compared with the previous control strategy, which closed the EGR valve during the whole transient operations, soot emission is slightly increased by 9.5%, but it is still 9% lower than the control limit. On the other hand, compared with the previous control strategy, NOx transient emission is reduced by 44%.
基金The work was supported by the National ScienceTechnical Committee in China (85-913-02-05)+1 种基金Climate Prediction Program the National Postdocter Fund.
文摘In this paper,experiment results about East Asia climate from five CGCMs are described.The ability of the models to simulate present climate and the simulated response to increased carbon dioxide are both covered.The results indicate that all models show substantial changes in climate when carbon dioxide concentrations are doubled.In particular,the strong surface warming at high latitudes in winter and the significant increase of summer precipitation in the monsoon area are produced by all models.Regional evaluation results show that these five CGCMs are particularly good in simulating spatial distribution of present climate.The main characteristics of the seasonal mean H500,SAT, MSLP field can be simulated by most CGCMs.But there are significant systematic errors in SAT, MSLP,HS00 fields in most models.On the whole,DKRZ OPYC is the best in simulating the present climate in East Asia.
基金co-supported by the Innovation Foundation of Beihang University for Ph.D. Graduatesthe National Natural Science Foundation of China (No. 51206007)
文摘The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–solid coupling is considered between the solid grain surface and combustion gas.Dynamic mesh is used to simulate the regression process of the solid fuel surface. Based on this model, numerical simulations on a H2O2/HTPB(hydroxyl-terminated polybutadiene) hybrid motor have been performed in the flow control process. The simulation results show that under the step change of the oxidizer mass flow rate condition, the regression rate cannot reach a stable value instantly because the flow field requires a short time period to adjust. The regression rate increases with the linear gain of oxidizer mass flow rate, and has a higher slope than the relative inlet function of oxidizer flow rate. A shorter regulation time can cause a higher regression rate during regulation process. The results also show that transient calculation can better simulate the instantaneous regression rate in the operation process.