This paper is engaged in the research of urban rail transit hub integration and transfer.Firstly,this paper focuses on the space division,the aggregation form of hub subsystems,the spatial layout of hub subsystems,and...This paper is engaged in the research of urban rail transit hub integration and transfer.Firstly,this paper focuses on the space division,the aggregation form of hub subsystems,the spatial layout of hub subsystems,and the design of integrated functions to achieve an integrated layout.In addition,this study also conducted a selection of transfer classification and transfer station layout of urban rail transit hubs,with the aims to promote the improvement of the functions of urban rail transit hubs,the rationality of transfers,and to improve the service quality of the hub system which meet the demand of the public travel.展开更多
Coordinated scheduling of multimode plays a pivotal role in the rapid gathering and dissipating of passengers in transport hubs. Based on the survey data, the whole-day reaching time distribution at transfer points of...Coordinated scheduling of multimode plays a pivotal role in the rapid gathering and dissipating of passengers in transport hubs. Based on the survey data, the whole-day reaching time distribution at transfer points of passengers from the dominant mode to the connecting mode was achieved. A GI/M K/1 bulk service queuing system was constituted by putting the passengers' reaching time distribution as the input and the connecting mode as the service institution. Through queuing theory, the relationship between average queuing length under steady-state and headway of the connecting mode was achieved. By putting the minimum total cost of system as optimization objective, the headway as decision variable, a coordinated scheduling model of multimode in intermodal transit hubs was established. At last, a dynamic scheduling strategy was generated to cope with the unexpected changes of the dominant mode. The instance analysis indicates that this model can significantly reduce passengers' queuing time by approximately 17% with no apparently increase in departure frequency, which provides a useful solution for the coordinated scheduling of different transport modes in hubs.展开更多
To increase the passenger transferring efficiency, the bus coordination holding control for transit hubs, which is as an important dynamic dispatching method for improving the service level of transit hubs, was studie...To increase the passenger transferring efficiency, the bus coordination holding control for transit hubs, which is as an important dynamic dispatching method for improving the service level of transit hubs, was studied in the framework of bus coordination dispatching mode. Firstly, the bus coordination holding control flow was studied based on Advanced Public Transportation Systems (APTS) environment. Then a control model was presented to optimize the bus vehicle holding time, and a genetic algorithm was designed as the solving method. In the end, an example was given to illustrate the effectiveness of the control strategy and the algorithm.展开更多
文摘This paper is engaged in the research of urban rail transit hub integration and transfer.Firstly,this paper focuses on the space division,the aggregation form of hub subsystems,the spatial layout of hub subsystems,and the design of integrated functions to achieve an integrated layout.In addition,this study also conducted a selection of transfer classification and transfer station layout of urban rail transit hubs,with the aims to promote the improvement of the functions of urban rail transit hubs,the rationality of transfers,and to improve the service quality of the hub system which meet the demand of the public travel.
基金Projects(51278221,51378076)supported by the National Natural Science Foundation of China
文摘Coordinated scheduling of multimode plays a pivotal role in the rapid gathering and dissipating of passengers in transport hubs. Based on the survey data, the whole-day reaching time distribution at transfer points of passengers from the dominant mode to the connecting mode was achieved. A GI/M K/1 bulk service queuing system was constituted by putting the passengers' reaching time distribution as the input and the connecting mode as the service institution. Through queuing theory, the relationship between average queuing length under steady-state and headway of the connecting mode was achieved. By putting the minimum total cost of system as optimization objective, the headway as decision variable, a coordinated scheduling model of multimode in intermodal transit hubs was established. At last, a dynamic scheduling strategy was generated to cope with the unexpected changes of the dominant mode. The instance analysis indicates that this model can significantly reduce passengers' queuing time by approximately 17% with no apparently increase in departure frequency, which provides a useful solution for the coordinated scheduling of different transport modes in hubs.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 70601022)the National Basic Research Program of China (Grant No.2006CB705505)
文摘To increase the passenger transferring efficiency, the bus coordination holding control for transit hubs, which is as an important dynamic dispatching method for improving the service level of transit hubs, was studied in the framework of bus coordination dispatching mode. Firstly, the bus coordination holding control flow was studied based on Advanced Public Transportation Systems (APTS) environment. Then a control model was presented to optimize the bus vehicle holding time, and a genetic algorithm was designed as the solving method. In the end, an example was given to illustrate the effectiveness of the control strategy and the algorithm.