This paper reaches a recommendation for the 10-year e-bus transition roadmap for New York City. The lifecycle model of emission reduction demonstrates the ecological and financial impacts of a complete transition from...This paper reaches a recommendation for the 10-year e-bus transition roadmap for New York City. The lifecycle model of emission reduction demonstrates the ecological and financial impacts of a complete transition from the current diesel bus fleet to an all-electric bus fleet in New York City by 2033. This study focuses on the NOx pollution, which is the highest among all major cities by Environmental Protection Agency (EPA) and greenhouse gases (GHG) with annual emissions of over five million tons. Our model predicts that switching to an all-electric bus fleet will cut GHG emissions by over 390,000 tons and NOx emissions by over 1300 tons annually, in addition to other pollutants such as VOCs and PM 2.5. yielding an annual economic benefit of over 75.94 million USD. This aligns with the city mayor office’s initiative of achieving total carbon neutrality. We further model an optimized transition roadmap that balances ecological and long-term benefits against the costs of the transition, emphasizing feasibility and alignment with the natural replacement cycle of existing buses, ensuring a steady budgeting pattern to minimize interruptions and resistance. Finally, we advocate for collaboration between government agencies, public transportation authorities, and private sectors, including electric buses and charging facility manufacturers, which is essential for fostering innovation and reducing the costs associated with the transition to e-buses.展开更多
As a major mode choice of commuters for daily travel, bus transit plays an important role in many urban and metropolitan areas. This work proposes a mathematical model to optimize bus service by minimizing total cost ...As a major mode choice of commuters for daily travel, bus transit plays an important role in many urban and metropolitan areas. This work proposes a mathematical model to optimize bus service by minimizing total cost and considering a temporally and directionally variable demand. An integrated bus service, consisting of all-stop and stop-skipping services is proposed and optimized subject to directional frequency conservation, capacity and operable fleet size constraints. Since the research problem is a combinatorial optimization problem, a genetic algorithm is developed to search for the optimal result in a large solution space. The model was successfully implemented on a bus transit route in the City of Chengdu, China, and the optimal solution was proved to be better than the original operation in terms of total cost. The sensitivity of model parameters to some key attributes/variables is analyzed and discussed to explore further the potential of accruing additional benefits or avoiding some of the drawbacks of stop-skipping services.展开更多
Based on oil development costs, the application research in the technical and economic limits calculation of oil development and the production optimal allocation to all the oilfields, was finished. At the same time, ...Based on oil development costs, the application research in the technical and economic limits calculation of oil development and the production optimal allocation to all the oilfields, was finished. At the same time, according to the regression of real development costs, a new method for oil well economic water cut and oil well economic rate are set up, the production optimal allocation is developed with satisfactory results.展开更多
The economic management of colleges and universities has always been a topic of great concern to China’s educational career,therefore,this paper will firstly make the necessary analysis of the current implementation ...The economic management of colleges and universities has always been a topic of great concern to China’s educational career,therefore,this paper will firstly make the necessary analysis of the current implementation of the economic management of colleges and universities in China,and then the reasons for the problems of economic management of colleges and universities in China is realized a detailed investigation,and finally,the economic management of colleges and universities based on capital and cost management optimization strategy is made a full discussion,looking forward to providing the necessary guidance for researchers in this field.展开更多
This paper is dedicated to analytical expression of the maximum electricity-cost ratio (M-ECR) point of the proton exchange membrane (PEM) fuel cell power generation as the function of cell constants and cost constant...This paper is dedicated to analytical expression of the maximum electricity-cost ratio (M-ECR) point of the proton exchange membrane (PEM) fuel cell power generation as the function of cell constants and cost constants. That is to formulize the maximum cost performance (MCP) magnitude and the optimal final operating (OFO) location in the working zone based on the five-constant ideal cell model and the two-constant cost model. The issues are well resolved by introducing the concepts of economic voltage and cost factor and describing the movement of the M-ECR point with cost factor. According to mathematical derivations, the movement can be described in the form of MCP and OFO curves. The derivations lead to a complete set of discriminants and criteria of the M-ECR point of PEM fuel cells that theoretically cover all of cell specialties and all of cost specialties. The discriminants and criteria may act as a general tool for the operation optimization of a diversity of PEM fuel cells and the economic viability estimation of the power generation.展开更多
In recent times, renewable energy production from renewable energy sources is an alternative way to fulfill the increased energy demands. However, the increasing energy demand rate places more pressure, leading to the...In recent times, renewable energy production from renewable energy sources is an alternative way to fulfill the increased energy demands. However, the increasing energy demand rate places more pressure, leading to the termination of conventional energy resources. However, the cost of power generation from coal-fired plants is higher than the power generation’s price from renewable energy sources. This experiment is focused on cost optimization during power generation through pumped storage power plant and wind power plant. The entire modeling of cost optimization has been conducted in two parts. The mathematical modeling was done using MATLAB simulation while the hydro and wind power plant’s emulation was performed using SCADA (Supervisory control and data acquisition) designer implementation. The experiment was conducted using ranges of generated power from both power sources. The optimum combination of output power and cost from both generators is determined via MATLAB simulation within the assumed generated output power range. Secondly, the hydro-generator and wind generator’s emulation were executed individually through synchronizing the grid to determine each generator’s specification using SCADA designer, which provided the optimum power generation from both generators with the specific speed, aligning with results generated through MATLAB. Finally, the operational power cost (with no losses consideration) from MATLAB was compared with the local energy provider to determine the cost-efficiency. This experiment has provided the operational cost optimization of the hydro-wind combined power system with stable wind power generation using SCADA, which will ultimately assist in operations of large-scale power systems, remotely minimizing multi-area dynamic issues while maximizing the system efficiency.展开更多
“双碳”战略和“交通强国”战略使得轨道交通系统向着高效能、高弹性和绿色化的方向发展。轨道交通系统自身具有丰富的资源,通过在其路域铺设新能源,并根据需要配置储能,构建轨道交通自洽能源系统,可实现系统的资产能源化,助力系统向...“双碳”战略和“交通强国”战略使得轨道交通系统向着高效能、高弹性和绿色化的方向发展。轨道交通系统自身具有丰富的资源,通过在其路域铺设新能源,并根据需要配置储能,构建轨道交通自洽能源系统,可实现系统的资产能源化,助力系统向绿色化方向演进。但随机性轨道交通负荷与随机性新能源出力相交织,使得轨道交通自洽能源系统的规划配置面临难题。为此,该文构建了轨道交通路域风力、光伏以及牵引负荷的不确定集合,从而考虑了供需双向不确定性;在此基础上,以年均成本最小为目标函数,并针对牵引变压器等自洽能源系统的组分进行分析,形成系统内各组分应满足的约束条件,从而构建了适应轨道交通运行需求的新能源-储能规划配置两阶段鲁棒优化模型;针对该模型的特点,采用改进列和约束生成(improved column and constraint generation,IC&CG)算法予以求解。算例分析结果表明,所提出的模型可以使得系统的自洽率满足设定要求,并降低了系统的碳排放成本,对推进轨道交通绿色化具有积极的推动作用。展开更多
In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent...In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs.展开更多
In recent years, there has been global interest in meeting targets relating to energy affordability and security while taking into account greenhouse gas emissions. This has heightened major interest in potential inve...In recent years, there has been global interest in meeting targets relating to energy affordability and security while taking into account greenhouse gas emissions. This has heightened major interest in potential investigations into the use of supercritical carbon dioxide (sCO2) power cycles. Climate change mitigation is the ultimate driver for this increased interest;other relevant issues include the potential for high cycle efficiency and a circular economy. In this study, a 25 MWe recompression closed Brayton cycle (RCBC) has been assessed, and sCO2 has been proposed as the working fluid for the power plant. The methodology used in this research work comprises thermodynamic and techno-economic analysis for the prospective commercialization of this sCO2 power cycle. An evaluated estimation of capital expenditure, operational expenditure, and cost of electricity has been considered in this study. The ASPEN Plus simulation results have been compared with theoretical and mathematical calculations to assess the performance of the compressors, turbine, and heat exchangers. The results thus reveal that the cycle efficiency for this prospective sCO2 recompression closed Brayton cycle increases (39% - 53.6%) as the temperature progressively increases from 550˚C to 900˚C. Data from the Aspen simulation model was used to aid the cost function calculations to estimate the total capital investment cost of the plant. Also, the techno-economic results have shown less cost for purchasing equipment due to fewer components being required for the cycle configuration as compared to the conventional steam power plant.展开更多
文摘This paper reaches a recommendation for the 10-year e-bus transition roadmap for New York City. The lifecycle model of emission reduction demonstrates the ecological and financial impacts of a complete transition from the current diesel bus fleet to an all-electric bus fleet in New York City by 2033. This study focuses on the NOx pollution, which is the highest among all major cities by Environmental Protection Agency (EPA) and greenhouse gases (GHG) with annual emissions of over five million tons. Our model predicts that switching to an all-electric bus fleet will cut GHG emissions by over 390,000 tons and NOx emissions by over 1300 tons annually, in addition to other pollutants such as VOCs and PM 2.5. yielding an annual economic benefit of over 75.94 million USD. This aligns with the city mayor office’s initiative of achieving total carbon neutrality. We further model an optimized transition roadmap that balances ecological and long-term benefits against the costs of the transition, emphasizing feasibility and alignment with the natural replacement cycle of existing buses, ensuring a steady budgeting pattern to minimize interruptions and resistance. Finally, we advocate for collaboration between government agencies, public transportation authorities, and private sectors, including electric buses and charging facility manufacturers, which is essential for fostering innovation and reducing the costs associated with the transition to e-buses.
基金Project(B01B1203)supported by Sichuan Province Key Laboratory of Comprehensive Transportation,ChinaProject(SWJTU09BR141)supported by the Southwest Jiaotong University,China
文摘As a major mode choice of commuters for daily travel, bus transit plays an important role in many urban and metropolitan areas. This work proposes a mathematical model to optimize bus service by minimizing total cost and considering a temporally and directionally variable demand. An integrated bus service, consisting of all-stop and stop-skipping services is proposed and optimized subject to directional frequency conservation, capacity and operable fleet size constraints. Since the research problem is a combinatorial optimization problem, a genetic algorithm is developed to search for the optimal result in a large solution space. The model was successfully implemented on a bus transit route in the City of Chengdu, China, and the optimal solution was proved to be better than the original operation in terms of total cost. The sensitivity of model parameters to some key attributes/variables is analyzed and discussed to explore further the potential of accruing additional benefits or avoiding some of the drawbacks of stop-skipping services.
文摘Based on oil development costs, the application research in the technical and economic limits calculation of oil development and the production optimal allocation to all the oilfields, was finished. At the same time, according to the regression of real development costs, a new method for oil well economic water cut and oil well economic rate are set up, the production optimal allocation is developed with satisfactory results.
文摘The economic management of colleges and universities has always been a topic of great concern to China’s educational career,therefore,this paper will firstly make the necessary analysis of the current implementation of the economic management of colleges and universities in China,and then the reasons for the problems of economic management of colleges and universities in China is realized a detailed investigation,and finally,the economic management of colleges and universities based on capital and cost management optimization strategy is made a full discussion,looking forward to providing the necessary guidance for researchers in this field.
文摘This paper is dedicated to analytical expression of the maximum electricity-cost ratio (M-ECR) point of the proton exchange membrane (PEM) fuel cell power generation as the function of cell constants and cost constants. That is to formulize the maximum cost performance (MCP) magnitude and the optimal final operating (OFO) location in the working zone based on the five-constant ideal cell model and the two-constant cost model. The issues are well resolved by introducing the concepts of economic voltage and cost factor and describing the movement of the M-ECR point with cost factor. According to mathematical derivations, the movement can be described in the form of MCP and OFO curves. The derivations lead to a complete set of discriminants and criteria of the M-ECR point of PEM fuel cells that theoretically cover all of cell specialties and all of cost specialties. The discriminants and criteria may act as a general tool for the operation optimization of a diversity of PEM fuel cells and the economic viability estimation of the power generation.
文摘In recent times, renewable energy production from renewable energy sources is an alternative way to fulfill the increased energy demands. However, the increasing energy demand rate places more pressure, leading to the termination of conventional energy resources. However, the cost of power generation from coal-fired plants is higher than the power generation’s price from renewable energy sources. This experiment is focused on cost optimization during power generation through pumped storage power plant and wind power plant. The entire modeling of cost optimization has been conducted in two parts. The mathematical modeling was done using MATLAB simulation while the hydro and wind power plant’s emulation was performed using SCADA (Supervisory control and data acquisition) designer implementation. The experiment was conducted using ranges of generated power from both power sources. The optimum combination of output power and cost from both generators is determined via MATLAB simulation within the assumed generated output power range. Secondly, the hydro-generator and wind generator’s emulation were executed individually through synchronizing the grid to determine each generator’s specification using SCADA designer, which provided the optimum power generation from both generators with the specific speed, aligning with results generated through MATLAB. Finally, the operational power cost (with no losses consideration) from MATLAB was compared with the local energy provider to determine the cost-efficiency. This experiment has provided the operational cost optimization of the hydro-wind combined power system with stable wind power generation using SCADA, which will ultimately assist in operations of large-scale power systems, remotely minimizing multi-area dynamic issues while maximizing the system efficiency.
文摘“双碳”战略和“交通强国”战略使得轨道交通系统向着高效能、高弹性和绿色化的方向发展。轨道交通系统自身具有丰富的资源,通过在其路域铺设新能源,并根据需要配置储能,构建轨道交通自洽能源系统,可实现系统的资产能源化,助力系统向绿色化方向演进。但随机性轨道交通负荷与随机性新能源出力相交织,使得轨道交通自洽能源系统的规划配置面临难题。为此,该文构建了轨道交通路域风力、光伏以及牵引负荷的不确定集合,从而考虑了供需双向不确定性;在此基础上,以年均成本最小为目标函数,并针对牵引变压器等自洽能源系统的组分进行分析,形成系统内各组分应满足的约束条件,从而构建了适应轨道交通运行需求的新能源-储能规划配置两阶段鲁棒优化模型;针对该模型的特点,采用改进列和约束生成(improved column and constraint generation,IC&CG)算法予以求解。算例分析结果表明,所提出的模型可以使得系统的自洽率满足设定要求,并降低了系统的碳排放成本,对推进轨道交通绿色化具有积极的推动作用。
文摘In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs.
文摘In recent years, there has been global interest in meeting targets relating to energy affordability and security while taking into account greenhouse gas emissions. This has heightened major interest in potential investigations into the use of supercritical carbon dioxide (sCO2) power cycles. Climate change mitigation is the ultimate driver for this increased interest;other relevant issues include the potential for high cycle efficiency and a circular economy. In this study, a 25 MWe recompression closed Brayton cycle (RCBC) has been assessed, and sCO2 has been proposed as the working fluid for the power plant. The methodology used in this research work comprises thermodynamic and techno-economic analysis for the prospective commercialization of this sCO2 power cycle. An evaluated estimation of capital expenditure, operational expenditure, and cost of electricity has been considered in this study. The ASPEN Plus simulation results have been compared with theoretical and mathematical calculations to assess the performance of the compressors, turbine, and heat exchangers. The results thus reveal that the cycle efficiency for this prospective sCO2 recompression closed Brayton cycle increases (39% - 53.6%) as the temperature progressively increases from 550˚C to 900˚C. Data from the Aspen simulation model was used to aid the cost function calculations to estimate the total capital investment cost of the plant. Also, the techno-economic results have shown less cost for purchasing equipment due to fewer components being required for the cycle configuration as compared to the conventional steam power plant.