The in situ high-pressure behavior of the semiconductor antimony trioxide (Sb2O3) iS investigated by the Raman spectroscopy techniques and angle-dispersive synchrotron x-ray powder diffractfon in a diamond anvil cel...The in situ high-pressure behavior of the semiconductor antimony trioxide (Sb2O3) iS investigated by the Raman spectroscopy techniques and angle-dispersive synchrotron x-ray powder diffractfon in a diamond anvil cell up to 31.5 and 30.7 GPa, respectively. New peaks observed in the external lattice mode range in the Raman spectra at 13.5 GPa suggest that the structural phase transition occurs. The group mode (140 cm^-1) in Sb2O3 exhibits anomalous pressure dependence; that is, the frequency decreases gradually with the increasing pressure. High pressure synchrotron x-ray diffraction measurements at room temperature reveal that the transition from the orthorhombic structure to high-pressure new phase occurs at about 14.2 GPa, corresponding to the softening of the group optic mode (140cm^-1).展开更多
The pressure-induced structural transitions of ZnTe are investigated at pressures up to 59.2 GPa in a diamond anvil cell by using synchrotron powder x-ray diffraction method. A phase transition from the initial zinc b...The pressure-induced structural transitions of ZnTe are investigated at pressures up to 59.2 GPa in a diamond anvil cell by using synchrotron powder x-ray diffraction method. A phase transition from the initial zinc blende (ZB, ZnTe-Ⅰ) structure to a cinnabar phase (ZnTe-Ⅱ) is observed at 9.6 GPa, followed by a high pressure orthorhombic phase (ZnTe-Ⅲ) with Cmcm symmetry at 12.1 GPa. The ZB, cinnabar (space group P3121), Cmcm, P31 and rock salt structures of ZnTe are investigated by using density functional theory calculations. Based on the experiments and calculations, the ZnTe-Ⅱ phase is determined to have a cinnabar structure rather than a P3 1 symmetry.展开更多
Experimental study was conducted for boundarylayers on a sharp 5° half-angle cone of 400mm length at angles of attack. The model was tested in the T-326 hypersonic wind tunnel (ITAM) at freestream Mach number M...Experimental study was conducted for boundarylayers on a sharp 5° half-angle cone of 400mm length at angles of attack. The model was tested in the T-326 hypersonic wind tunnel (ITAM) at freestream Mach number M = 5.95. Mean and fluctuation wall characteristics of the boundary layer are measured at 0°, 2°, 3° and 4° angles of attack for different stagnation pressures. Pulsation measurements are carried out by means of ALTP sensor. Pressure and temperature distributions along the model are obtained, and transition beginning and end locations have been found. Boundary layer stabilization with the increase of angle of attack and the decrease of stagnation pressure is observed. High frequency pulsations inherent to hypersonic boundary layer (second mode) have been detected.展开更多
The deflagration-to-detonation transitions (DDTs) for clouds of spherical aluminum dust (SAD) mixed with air or epoxypropane mist (EPM) and air were investigated in a 29.6-m-long experimental tube of 199 mm in diamete...The deflagration-to-detonation transitions (DDTs) for clouds of spherical aluminum dust (SAD) mixed with air or epoxypropane mist (EPM) and air were investigated in a 29.6-m-long experimental tube of 199 mm in diameter. The clouds formed through the injection of SAD and SAD/liquid epoxypropane samples into the experimental tube. Explosions of the SAD/air mixture were initiated using a 7-m-long EPM/air cloud explosion ignited by a 40-J electric spark. Explosions in SAD/EPM/air clouds were initiated using a 1.2-m EPM/air cloud explosion ignited by a 40-J electric spark initiated using a 40-J electric spark. Self-sustained detonation waves formed in SAD/EPM/air mixtures instead of in SAD/air mixtures. The stages and characteristics of the DDT process in SAD/air and SAD/EPM/air mixtures were studied and analyzed. Self-sustained detonation was evident from the existence of a transverse wave and a cellular structure. Moreover, a retonation wave formed during the DDT process in SAD/EPM/air clouds.展开更多
We use the latest results of the ultra-high accuracy 1S-2S transition experiments in the hydrogen atom to constrain the forms of the deformed dispersion relation in the non-relativistic limit.For the leading correctio...We use the latest results of the ultra-high accuracy 1S-2S transition experiments in the hydrogen atom to constrain the forms of the deformed dispersion relation in the non-relativistic limit.For the leading correction of the non-relativistic limit,the experiment sets a limit at an order of magnitude for the desired Planck-scale level,thereby providing another example of the Planck-scale sensitivity in the study of the dispersion relation in controlled laboratory experiments.For the next-to-leading term,the bound is two orders of magnitude away from the Planck scale,however it still amounts to the best limit,in contrast to the previously obtained bound in the non-relativistic limit from the cold-atom-recoil experiments.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11304114
文摘The in situ high-pressure behavior of the semiconductor antimony trioxide (Sb2O3) iS investigated by the Raman spectroscopy techniques and angle-dispersive synchrotron x-ray powder diffractfon in a diamond anvil cell up to 31.5 and 30.7 GPa, respectively. New peaks observed in the external lattice mode range in the Raman spectra at 13.5 GPa suggest that the structural phase transition occurs. The group mode (140 cm^-1) in Sb2O3 exhibits anomalous pressure dependence; that is, the frequency decreases gradually with the increasing pressure. High pressure synchrotron x-ray diffraction measurements at room temperature reveal that the transition from the orthorhombic structure to high-pressure new phase occurs at about 14.2 GPa, corresponding to the softening of the group optic mode (140cm^-1).
基金Supported by the National Natural Science Foundation of China under Grant No 11474280the National Basic Research Program of China under Grant No 2011CB808200the Chinese Academy of Sciences under Grant Nos KJCX2-SW-N20 and KJCX2-SW-N03
文摘The pressure-induced structural transitions of ZnTe are investigated at pressures up to 59.2 GPa in a diamond anvil cell by using synchrotron powder x-ray diffraction method. A phase transition from the initial zinc blende (ZB, ZnTe-Ⅰ) structure to a cinnabar phase (ZnTe-Ⅱ) is observed at 9.6 GPa, followed by a high pressure orthorhombic phase (ZnTe-Ⅲ) with Cmcm symmetry at 12.1 GPa. The ZB, cinnabar (space group P3121), Cmcm, P31 and rock salt structures of ZnTe are investigated by using density functional theory calculations. Based on the experiments and calculations, the ZnTe-Ⅱ phase is determined to have a cinnabar structure rather than a P3 1 symmetry.
基金the Russian Foundation for Basic Research (Grant 08-01-91956-NNIO)ADTP RNP 2.1.1/3963Program RAS (project 11/9)
文摘Experimental study was conducted for boundarylayers on a sharp 5° half-angle cone of 400mm length at angles of attack. The model was tested in the T-326 hypersonic wind tunnel (ITAM) at freestream Mach number M = 5.95. Mean and fluctuation wall characteristics of the boundary layer are measured at 0°, 2°, 3° and 4° angles of attack for different stagnation pressures. Pulsation measurements are carried out by means of ALTP sensor. Pressure and temperature distributions along the model are obtained, and transition beginning and end locations have been found. Boundary layer stabilization with the increase of angle of attack and the decrease of stagnation pressure is observed. High frequency pulsations inherent to hypersonic boundary layer (second mode) have been detected.
基金supported by the National Natural Science Foundation of China (Grant No. 10772032)the Foundation of State Key Lab of Explosion Science and Technology (Grant Nos. ZDKT08-2-6, YBKT09-1)the National Basic Research Program of China (Grant No. 2011CB706900)
文摘The deflagration-to-detonation transitions (DDTs) for clouds of spherical aluminum dust (SAD) mixed with air or epoxypropane mist (EPM) and air were investigated in a 29.6-m-long experimental tube of 199 mm in diameter. The clouds formed through the injection of SAD and SAD/liquid epoxypropane samples into the experimental tube. Explosions of the SAD/air mixture were initiated using a 7-m-long EPM/air cloud explosion ignited by a 40-J electric spark. Explosions in SAD/EPM/air clouds were initiated using a 1.2-m EPM/air cloud explosion ignited by a 40-J electric spark initiated using a 40-J electric spark. Self-sustained detonation waves formed in SAD/EPM/air mixtures instead of in SAD/air mixtures. The stages and characteristics of the DDT process in SAD/air and SAD/EPM/air mixtures were studied and analyzed. Self-sustained detonation was evident from the existence of a transverse wave and a cellular structure. Moreover, a retonation wave formed during the DDT process in SAD/EPM/air clouds.
基金Supported by the Program for(NCET-12-1060)the Sichuan Youth Science and Technology Foundation with(2011JQ0019)+4 种基金FANEDD with(201319)the Innovative Research Team in College of Sichuan Province with(13TD0003)Ten Thousand Talent Program of Sichuan Provinceby Sichuan Natural Science Foundation with(16ZB0178)the starting funds of China West Normal University with(17YC513,17C050)
文摘We use the latest results of the ultra-high accuracy 1S-2S transition experiments in the hydrogen atom to constrain the forms of the deformed dispersion relation in the non-relativistic limit.For the leading correction of the non-relativistic limit,the experiment sets a limit at an order of magnitude for the desired Planck-scale level,thereby providing another example of the Planck-scale sensitivity in the study of the dispersion relation in controlled laboratory experiments.For the next-to-leading term,the bound is two orders of magnitude away from the Planck scale,however it still amounts to the best limit,in contrast to the previously obtained bound in the non-relativistic limit from the cold-atom-recoil experiments.