By a detailed investigation of geometry and kinematics of the Shangma (商麻) fault in Dabieshan (大别山), three different crust levels of extension movement have been recognized in sequence from the deep to the sh...By a detailed investigation of geometry and kinematics of the Shangma (商麻) fault in Dabieshan (大别山), three different crust levels of extension movement have been recognized in sequence from the deep to the shallow:① low-angle ductile detachment shearing with top to the NW; ② low-angle normal fault with top to the NW or NWW in brittle or brittle-ductile transition domain; ③ high-angle brittle normal fault with top to the W or NWW. Two samples were chosen for zircon U-Pb age dating to constrain the activity age of the Shangma fault. A bedding intrusive granitoid pegmatite vein that is parallel to the foliation of the low-angle ductile detachment shear zone of the country rock exhibits a lotus-joint type of boudinage deformation, showing syn-tectonic emplacing at the end of the ductile deformation period and deformation in the brittle-ductile transition domain. The zircon U-Pb dating of this granitoid pegmatite vein gives an age of (125.9±4.2) Ma, which expresses the extension in the brittle-ductile transition domain of the Shangma fault. The other sample, which is collected from a granite pluton cutting the foliation of the low-angle ductile detachment shear zone, gives a zircon U-Pb age of (118.8±4.1) Ma, constraining the end of the ductile detachment shearing. Then the transformation age from ductile to brittle deformation can be constrained between 126-119 Ma. Combined with the previous researches, the formation of the Luotian (罗田) dome, which is locatedto the east of the Shangma fault, can be constrained during 150-126 Ma. This study gives a new time constraint to the evolution of the Dabie orogenic belt.展开更多
The brittle–ductile transition(BDT) widely exists in the manufacturing with extremely small deformation scale, thermally assisted machining, and high-speed machining. This paper reviews the BDT in extreme manufacturi...The brittle–ductile transition(BDT) widely exists in the manufacturing with extremely small deformation scale, thermally assisted machining, and high-speed machining. This paper reviews the BDT in extreme manufacturing. The factors affecting the BDT in extreme manufacturing are analyzed, including the deformation scale and deformation temperature induced brittle-to-ductile transition, and the reverse transition induced by grain size and strain rate. A discussion is arranged to explore the mechanisms of BDT and how to improve the machinability based on the BDT. It is proposed that the mutual transition between brittleness and ductility results from the competition between the occurrence of plastic deformation and the propagation of cracks. The brittleness or ductility of machined material should benefit a specific manufacturing process, which can be regulated by the deformation scale, deformation temperature and machining speed.展开更多
Deformation experiments of Carrara marble were conducted under increasing temperatures (temperatures 300℃ - 550℃, confining pressure 0. 5Mpa, strain - rate 5 × 10- 6 s-1 ). The experiments reveal that calcite r...Deformation experiments of Carrara marble were conducted under increasing temperatures (temperatures 300℃ - 550℃, confining pressure 0. 5Mpa, strain - rate 5 × 10- 6 s-1 ). The experiments reveal that calcite rocks show different deformation behaviors and corresponding microstructural characteristics under different temperatures. By analyzing microstructural characteristics, preferred grain shape orientation variation of the primary rocks and deformed specimen, the deformation features of Carrara marble are summarized: twinning, fracturing dominates deformation of the rocks at temperatures between 300℃ and 450℃; dynamic recrystallization occurs in the temperature range of 450- 550℃; the brittle to crystalline plasticity transition deformation is observed at around 450℃, twinning and crystal - plastic deformation become dominant with further increasing temperature.展开更多
The ductility map of 304HC stainless was determined by using the Gleeble-1500 dynamic thermal-mechanical simulator. The effect of Cu on the hot ductility of 304HC stainless steel was analyzed and the mathematical mode...The ductility map of 304HC stainless was determined by using the Gleeble-1500 dynamic thermal-mechanical simulator. The effect of Cu on the hot ductility of 304HC stainless steel was analyzed and the mathematical model of resistance to deformation was established. The microstructure, inclusion and fracture surface were studied by using the method of micro structure analysis, scanning, energy spectrum and electron microscope. The results show that Cu has effect on the hot ductility, and the hot ductility of 304HC stainless steel decrease with the increase of content of Cu. The deformation temperature also has much effect on the hot ductility, the suitable deformation temperature are 1100-1200℃. The reason of it is that the Cu rich chemical compounds were precipitated from austenite phase during cooling. The Cu rich chemical compounds are brittle substance such as Cu2S, Cu2O and ε-Cu etc.展开更多
In this paper, several mechanical deformation curves of limestone are reviewed, and the effects of temperature, confining pressure, and fluid are discussed. Generally, Mohr–Coulomb is used for limestone brittle fract...In this paper, several mechanical deformation curves of limestone are reviewed, and the effects of temperature, confining pressure, and fluid are discussed. Generally, Mohr–Coulomb is used for limestone brittle fracture. The characteristic of low temperature cataclastic flow and the conditions and constitutive equations of intracrystal plastic deformation such as dislocation creep,diffusion creep, and superplastic flow are discussed in detail. Specifically, from the macroscopic and microscopic view, inelastic compression deformation(shear-enhanced compaction) of large porosity limestone is elaborated.Compared with other mechanics models and strength equations, the dual porosity(macroporosity and microporosity) model is superior and more consistent with experimental data. Previous research has suffered from a shortage of high temperature and high pressure limestone research; we propose several suggestions to avoid this problem in the future:(1) fluid-rock interaction research;(2) mutual transition between natural conditions and laboratory research;(3) the uniform strength criterion forshear-enhanced compaction deformation;(4) test equipment; and(5) superplastic flow mechanism research.展开更多
The ductile shearing zones of coal seams in a brittle deformation domain in super-ficial lithosphere are put forward based on the study on bedding shearing and ductile rheology of coal seams. The macrocosmic and micro...The ductile shearing zones of coal seams in a brittle deformation domain in super-ficial lithosphere are put forward based on the study on bedding shearing and ductile rheology of coal seams. The macrocosmic and microcosmic characteristics include wrinkle fold, mymonitized zones and ductile planar structure of coal seams, etc., while the microcosmic characteristics may also include different optic-axis fabrics and the anisotropy of vitrinite reflectance as well as the change of chemical structure and organic geochemistry components. The forming mechanism is analyzed and the strain environment of ductile shearing zones of coal seams discussed. The result indicates that, in the superficial brittle deformation domain, the coal seams are easy to be deformed, resulting in not only brittle deformation but also ductile shearing deformation under the action of force. Because of simple shearing stress, the interlayer gliding or ductile rheology may take place between coal seams and wall rocks. Therefore, many ductile shearing zones come into being in superficial lithosphere (<5 km). The research on ductile shearing zone of brittle de-formation domain in superficial lithosphere is significant not only theoretically for the study of ductile shearing and ductile rheology of the lithosphere but also practically for the structural movement of coal seams, the formation and accumulation of coal-bed methane, and the preven-tion and harness of gas burst in coal mine.展开更多
Ductile deformation and brittle deformation belong to totally different deformation systems, but in field investigation and indoor research, they are often found to be intergrown. Some people think that this is due to...Ductile deformation and brittle deformation belong to totally different deformation systems, but in field investigation and indoor research, they are often found to be intergrown. Some people think that this is due to two different deformation processes, while展开更多
The petrophysical property of mudstone often transforms from ductile to brittle in the process of burial-uplift. The deformation mechanism of fault in brittle and ductile mudstone caprock is different, which leads to ...The petrophysical property of mudstone often transforms from ductile to brittle in the process of burial-uplift. The deformation mechanism of fault in brittle and ductile mudstone caprock is different, which leads to the formation of different types of fault zone structure. Different methods are required to evaluate the sealing mechanism of those fault zones. Based on the caprock deformation mechanism, fault sealing mechanism, quantitative evaluation method of vertical fault sealing capacity is put forward in this study. Clay smear is formed in the process of plastic deformation and its continuity controls the sealing capacity of fault. The outcrop and oil field data have confirmed that when sealing parameter SSF is less than 4–7, the clay smear becomes discontinuous and then oil and gas go through the caprock and migrate vertically. Quantities of fractures are formed in mudstone in the process of brittle deformation. The fracture density increases with the increase of the fault displacement. When the fractures are connected, oil and gas go through the caprock and migrate vertically. The connectivity of fault depends on the displacement and the thickness of caprock. On the basis of the above, a method is put forward to quantify the connectivity of fault with the juxtaposition thickness of caprock after faulting. The research on the juxtaposition thickness of caprock after faulting of the member II of Dongying Formation in Nanpu depression and the distribution of oil and gas indicates when the juxtaposition thickness of caprock is less than 96.2 m, the fault becomes leaking vertically. In the lifting stage, with the releasing and unloading of the stress, the caprock becomes brittle generally and then forms through going fault which will lead to a large quantity of oil and gas migrate vertically.展开更多
Highly precise (σ ~1 mm) temporal deformation measurements are taken across the Xianshuihe fault from two pairs of continuous GPS stations straddling the fault. Baseline vector changes of the two pairs of stations sh...Highly precise (σ ~1 mm) temporal deformation measurements are taken across the Xianshuihe fault from two pairs of continuous GPS stations straddling the fault. Baseline vector changes of the two pairs of stations show clearly the difference in deformation behavior between the Qianning and Daofu segments of the fault: the former deforms steadily, and the latter deforms with a strong transient component. The transient deformation across the Daofu segment is possibly related to its irregular geometry, where the fault splits into two branches, that is, the east and west branches. An attempt is made to interpret the baseline vector changes using a kinematic fault model composed of a brittle layer in the upper crust, a ductile layer in the lower crust, and a transition zone in between. The slip in the transition zone of the south segment of the Xianshuihe fault is steady. The slips in the transition zones of the north and Daofu segments of the Xianshuihe fault, however, are not steady, and the average slip rates there are higher than that of the south segment. The difference in deformation behavior is probably associated with the rheological properties of the fault interface, suggesting that the overall fault strength of the south segment is greater than those of the north and Daofu segments, corresponding to longer earthquake recurrence time.展开更多
基金the National Key Science Foundation of China (No.40334037)the National Natural Science Foundation of China (No.40672137)
文摘By a detailed investigation of geometry and kinematics of the Shangma (商麻) fault in Dabieshan (大别山), three different crust levels of extension movement have been recognized in sequence from the deep to the shallow:① low-angle ductile detachment shearing with top to the NW; ② low-angle normal fault with top to the NW or NWW in brittle or brittle-ductile transition domain; ③ high-angle brittle normal fault with top to the W or NWW. Two samples were chosen for zircon U-Pb age dating to constrain the activity age of the Shangma fault. A bedding intrusive granitoid pegmatite vein that is parallel to the foliation of the low-angle ductile detachment shear zone of the country rock exhibits a lotus-joint type of boudinage deformation, showing syn-tectonic emplacing at the end of the ductile deformation period and deformation in the brittle-ductile transition domain. The zircon U-Pb dating of this granitoid pegmatite vein gives an age of (125.9±4.2) Ma, which expresses the extension in the brittle-ductile transition domain of the Shangma fault. The other sample, which is collected from a granite pluton cutting the foliation of the low-angle ductile detachment shear zone, gives a zircon U-Pb age of (118.8±4.1) Ma, constraining the end of the ductile detachment shearing. Then the transformation age from ductile to brittle deformation can be constrained between 126-119 Ma. Combined with the previous researches, the formation of the Luotian (罗田) dome, which is locatedto the east of the Shangma fault, can be constrained during 150-126 Ma. This study gives a new time constraint to the evolution of the Dabie orogenic belt.
基金support from the National Natural Science Foundation of China (Grant No. 51835004)。
文摘The brittle–ductile transition(BDT) widely exists in the manufacturing with extremely small deformation scale, thermally assisted machining, and high-speed machining. This paper reviews the BDT in extreme manufacturing. The factors affecting the BDT in extreme manufacturing are analyzed, including the deformation scale and deformation temperature induced brittle-to-ductile transition, and the reverse transition induced by grain size and strain rate. A discussion is arranged to explore the mechanisms of BDT and how to improve the machinability based on the BDT. It is proposed that the mutual transition between brittleness and ductility results from the competition between the occurrence of plastic deformation and the propagation of cracks. The brittleness or ductility of machined material should benefit a specific manufacturing process, which can be regulated by the deformation scale, deformation temperature and machining speed.
基金National Natural Science Foundation of China(49872071)
文摘Deformation experiments of Carrara marble were conducted under increasing temperatures (temperatures 300℃ - 550℃, confining pressure 0. 5Mpa, strain - rate 5 × 10- 6 s-1 ). The experiments reveal that calcite rocks show different deformation behaviors and corresponding microstructural characteristics under different temperatures. By analyzing microstructural characteristics, preferred grain shape orientation variation of the primary rocks and deformed specimen, the deformation features of Carrara marble are summarized: twinning, fracturing dominates deformation of the rocks at temperatures between 300℃ and 450℃; dynamic recrystallization occurs in the temperature range of 450- 550℃; the brittle to crystalline plasticity transition deformation is observed at around 450℃, twinning and crystal - plastic deformation become dominant with further increasing temperature.
基金This study was financially supported by both the National Natural Science Founda- tion of China (Grant No.59995440)the Natural Science Foundation of Liaoning Province (Grant No.2001101021).
文摘The ductility map of 304HC stainless was determined by using the Gleeble-1500 dynamic thermal-mechanical simulator. The effect of Cu on the hot ductility of 304HC stainless steel was analyzed and the mathematical model of resistance to deformation was established. The microstructure, inclusion and fracture surface were studied by using the method of micro structure analysis, scanning, energy spectrum and electron microscope. The results show that Cu has effect on the hot ductility, and the hot ductility of 304HC stainless steel decrease with the increase of content of Cu. The deformation temperature also has much effect on the hot ductility, the suitable deformation temperature are 1100-1200℃. The reason of it is that the Cu rich chemical compounds were precipitated from austenite phase during cooling. The Cu rich chemical compounds are brittle substance such as Cu2S, Cu2O and ε-Cu etc.
基金supported by Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant XDB18010401135 Program of the Institute of Geochemistry, Chinese Academy of Sciences
文摘In this paper, several mechanical deformation curves of limestone are reviewed, and the effects of temperature, confining pressure, and fluid are discussed. Generally, Mohr–Coulomb is used for limestone brittle fracture. The characteristic of low temperature cataclastic flow and the conditions and constitutive equations of intracrystal plastic deformation such as dislocation creep,diffusion creep, and superplastic flow are discussed in detail. Specifically, from the macroscopic and microscopic view, inelastic compression deformation(shear-enhanced compaction) of large porosity limestone is elaborated.Compared with other mechanics models and strength equations, the dual porosity(macroporosity and microporosity) model is superior and more consistent with experimental data. Previous research has suffered from a shortage of high temperature and high pressure limestone research; we propose several suggestions to avoid this problem in the future:(1) fluid-rock interaction research;(2) mutual transition between natural conditions and laboratory research;(3) the uniform strength criterion forshear-enhanced compaction deformation;(4) test equipment; and(5) superplastic flow mechanism research.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 40172058)the National Key Development Plan Project of Basic Research (973 Plan)(Grant No. 2002CB211704) the Skeleton Teacher of Higher Education.
文摘The ductile shearing zones of coal seams in a brittle deformation domain in super-ficial lithosphere are put forward based on the study on bedding shearing and ductile rheology of coal seams. The macrocosmic and microcosmic characteristics include wrinkle fold, mymonitized zones and ductile planar structure of coal seams, etc., while the microcosmic characteristics may also include different optic-axis fabrics and the anisotropy of vitrinite reflectance as well as the change of chemical structure and organic geochemistry components. The forming mechanism is analyzed and the strain environment of ductile shearing zones of coal seams discussed. The result indicates that, in the superficial brittle deformation domain, the coal seams are easy to be deformed, resulting in not only brittle deformation but also ductile shearing deformation under the action of force. Because of simple shearing stress, the interlayer gliding or ductile rheology may take place between coal seams and wall rocks. Therefore, many ductile shearing zones come into being in superficial lithosphere (<5 km). The research on ductile shearing zone of brittle de-formation domain in superficial lithosphere is significant not only theoretically for the study of ductile shearing and ductile rheology of the lithosphere but also practically for the structural movement of coal seams, the formation and accumulation of coal-bed methane, and the preven-tion and harness of gas burst in coal mine.
文摘Ductile deformation and brittle deformation belong to totally different deformation systems, but in field investigation and indoor research, they are often found to be intergrown. Some people think that this is due to two different deformation processes, while
基金financially supported by the National Natural Science Foundation of China (Nos. U1562214, 41702156, 41272151)the National Science and Technology Major Project (No. 2016ZX05003-002)
文摘The petrophysical property of mudstone often transforms from ductile to brittle in the process of burial-uplift. The deformation mechanism of fault in brittle and ductile mudstone caprock is different, which leads to the formation of different types of fault zone structure. Different methods are required to evaluate the sealing mechanism of those fault zones. Based on the caprock deformation mechanism, fault sealing mechanism, quantitative evaluation method of vertical fault sealing capacity is put forward in this study. Clay smear is formed in the process of plastic deformation and its continuity controls the sealing capacity of fault. The outcrop and oil field data have confirmed that when sealing parameter SSF is less than 4–7, the clay smear becomes discontinuous and then oil and gas go through the caprock and migrate vertically. Quantities of fractures are formed in mudstone in the process of brittle deformation. The fracture density increases with the increase of the fault displacement. When the fractures are connected, oil and gas go through the caprock and migrate vertically. The connectivity of fault depends on the displacement and the thickness of caprock. On the basis of the above, a method is put forward to quantify the connectivity of fault with the juxtaposition thickness of caprock after faulting. The research on the juxtaposition thickness of caprock after faulting of the member II of Dongying Formation in Nanpu depression and the distribution of oil and gas indicates when the juxtaposition thickness of caprock is less than 96.2 m, the fault becomes leaking vertically. In the lifting stage, with the releasing and unloading of the stress, the caprock becomes brittle generally and then forms through going fault which will lead to a large quantity of oil and gas migrate vertically.
基金the National Basic Research Program of China (Grant No. 2004CB418403)
文摘Highly precise (σ ~1 mm) temporal deformation measurements are taken across the Xianshuihe fault from two pairs of continuous GPS stations straddling the fault. Baseline vector changes of the two pairs of stations show clearly the difference in deformation behavior between the Qianning and Daofu segments of the fault: the former deforms steadily, and the latter deforms with a strong transient component. The transient deformation across the Daofu segment is possibly related to its irregular geometry, where the fault splits into two branches, that is, the east and west branches. An attempt is made to interpret the baseline vector changes using a kinematic fault model composed of a brittle layer in the upper crust, a ductile layer in the lower crust, and a transition zone in between. The slip in the transition zone of the south segment of the Xianshuihe fault is steady. The slips in the transition zones of the north and Daofu segments of the Xianshuihe fault, however, are not steady, and the average slip rates there are higher than that of the south segment. The difference in deformation behavior is probably associated with the rheological properties of the fault interface, suggesting that the overall fault strength of the south segment is greater than those of the north and Daofu segments, corresponding to longer earthquake recurrence time.