In recent years,transition metal borides(TMBs)have attracted much attention because they are considered as potential superhard materials and have more abundant crystal structures compared with traditional superhard ma...In recent years,transition metal borides(TMBs)have attracted much attention because they are considered as potential superhard materials and have more abundant crystal structures compared with traditional superhard materials.So far,however,no superhard materials have been found in TMBs.A large number of structures and potential new properties in TMBs are induced by the various hybridization ways of boron atoms and the high valence electrons of transition metals,which provide many possibilities for its application.And most TMBs have layered structures,which make TMBs have the potential to be a two-dimensional(2D)material.The 2D materials have novel properties,but the research on 2D TMBs is still nearly blank.In this paper,the research progress of TMBs is summarized involving structure,mechanical properties,and multifunctional properties.The strong covalent bonds of boron atoms in TMBs can form one-dimensional,twodimensional,and three-dimensional substructures,and the multiple electron transfer between transition metal and boron leads to a variety of chemical bonds in TMBs,which are the keys to obtain high hardness and multifunctional properties of TMBs.Further research on the multifunctional properties of TMBs,such as superconductors,catalysts,and high hardness ferromagnetic materials,is of great significance to the discovery of new multifunctional hard materials.展开更多
Electrocatalytic water splitting to produce hydrogen is an eco-friendly way to achieve sustainable utilization of renewable energy.The industrial application of water electrolysis, which is severely limited by slow ki...Electrocatalytic water splitting to produce hydrogen is an eco-friendly way to achieve sustainable utilization of renewable energy.The industrial application of water electrolysis, which is severely limited by slow kinetic reactions on electrode surfaces, requires the development of highly reactive, low-cost and stable electrocatalytic materials. Transition metal borides/borates have recently emerged as promising electrocatalytic materials for catalyzing hydrogen/oxygen evolution reactions(HER/OER) in inexpensive electrolyzers. However, so far, there has been little comprehensive summary of transition metal borides/borates. Here, this review provides the latest research progress on transition metal borides/borates for electrocatalytic water splitting. The structural characteristics of transition metal borides/borates and their synthesis methods in recent years are discussed. Then, the theoretical and experimental progress of transition metal borides including single-metal borides, multi-metal borides, borate derived and other nanocomposites containing boron(boron-doped nanocomposites/substrate with boron) in electrocatalytic reaction and the role of boron in regulating electrocatalytic performance are further emphasized. Finally, the potential challenges and future prospects of transition metal borides/borates in electrocatalysis are presented.展开更多
Using the evolutionary methodology for crystal structure prediction,we have predicted the orthorhombic Cmcm and Pnma phases for ScB_(4).The earlier proposed Cr B_(4)^(-),Fe B_(4)^(-),Mn B_(4)^(-),and Re P_(4)^(-)type ...Using the evolutionary methodology for crystal structure prediction,we have predicted the orthorhombic Cmcm and Pnma phases for ScB_(4).The earlier proposed Cr B_(4)^(-),Fe B_(4)^(-),Mn B_(4)^(-),and Re P_(4)^(-)type structures for ScB_(4)are excluded.It is first discovered that the Cmcm phase transforms to the Pnma phase at about 18 GPa.Moreover,both phases are dynamically and mechanically stable.The large bulk modulus,shear modulus,and Young's modulus of the two phases make it an optimistic low compressible material.Moreover,the strong covalent bonding nature of ScB_(4)is confirmed by the ELF analysis.The strong covalent bonding contributes greatly to its stability.展开更多
In this paper, density functional computations have been applied to the structural, elastic and electronic properties of ternary transition metal diborides Re0.5Ir0.5B2, Re0.5Tc0.5B2, Os0.5W0.5B2 and Os0.5Ru0.5B2 in h...In this paper, density functional computations have been applied to the structural, elastic and electronic properties of ternary transition metal diborides Re0.5Ir0.5B2, Re0.5Tc0.5B2, Os0.5W0.5B2 and Os0.5Ru0.5B2 in hexagonal (P63/mmc) and orthorhombic (Pmmn) structures with both local density approximation and generalized gradient approximation. LDA gives smaller lattice parameters and larger elastic moduli than GGA. Both results show that the hexagonal ones are more stable than orthorhombic ones except Os0.5Ru0.5B2. Moreover, the hexagonal structure has superior elastic property than orthorhombic one. Generally speaking, the calculated elastic moduli of Re0.5Ir0.5B2 and Os0.5Ru0.5B2 are smaller than those values of Re0.5Tc0.5B2 and Os0.5W0.5B2 within the same structure because of the filling of antibonding states. The relativistic effects result in weaker bonds of Tc-B (Ru-B) than those of Re-B (Os-B). All the diborides are ultra-incompressible. Re0.5Tc0.5B2 has the largest shear modulus and it is a promising superhard diboride like Os0.5W0.5B2. The elastic properties are in high correlation with the bond strength. The shear moduli are more sensitive than the bulk moduli to the bond strength.展开更多
In this communication, the possibility for the preparation of two-dimensional MBene CrB from MAB phase Cr2AlB2 is demonstrated for the first time. Herein M is a transition metal, A is a group IIIAor IVA element and B ...In this communication, the possibility for the preparation of two-dimensional MBene CrB from MAB phase Cr2AlB2 is demonstrated for the first time. Herein M is a transition metal, A is a group IIIAor IVA element and B is boron; MAB phases are layered transition metal ternary borides, MBene is used to emphasize the loss of A group element from the parent MAB phases and to highlight the 2 D nature. The possible 2 D CrB nano sheets are prepared by selectively etching out Al layers from Cr2AlB-2 by immersing the Cr2AlB2 powders in dilute HCl solution at room temperature. The as-prepared 2 D CrB nano sheets are examined using X-ray diffraction and scanning electron microscopy and energy dispersive X-ray spectroscopy(EDS). In addition, different structure models are built to explain the observed phenomena.The discovery in this work opens a door to the synthesis of a large number of new 2 D MBenes from MAB phases.展开更多
基金supported by the National Key Research and Development Program of China(Grant Nos.2016YFA0401503 and 2018YFA0305700)the National Natural Science Foundation of China(Grant No.11575288)+1 种基金the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant Nos.XDB33000000,XDB25000000,and QYZDBSSW-SLH013)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.Y202003)。
文摘In recent years,transition metal borides(TMBs)have attracted much attention because they are considered as potential superhard materials and have more abundant crystal structures compared with traditional superhard materials.So far,however,no superhard materials have been found in TMBs.A large number of structures and potential new properties in TMBs are induced by the various hybridization ways of boron atoms and the high valence electrons of transition metals,which provide many possibilities for its application.And most TMBs have layered structures,which make TMBs have the potential to be a two-dimensional(2D)material.The 2D materials have novel properties,but the research on 2D TMBs is still nearly blank.In this paper,the research progress of TMBs is summarized involving structure,mechanical properties,and multifunctional properties.The strong covalent bonds of boron atoms in TMBs can form one-dimensional,twodimensional,and three-dimensional substructures,and the multiple electron transfer between transition metal and boron leads to a variety of chemical bonds in TMBs,which are the keys to obtain high hardness and multifunctional properties of TMBs.Further research on the multifunctional properties of TMBs,such as superconductors,catalysts,and high hardness ferromagnetic materials,is of great significance to the discovery of new multifunctional hard materials.
基金financially supported by National Natural Science Foundation of China(Nos.22078362 and 21808243)the Postgraduate Innovation Engineering Project of China University of Petroleum(East China)(YCX2021063)。
文摘Electrocatalytic water splitting to produce hydrogen is an eco-friendly way to achieve sustainable utilization of renewable energy.The industrial application of water electrolysis, which is severely limited by slow kinetic reactions on electrode surfaces, requires the development of highly reactive, low-cost and stable electrocatalytic materials. Transition metal borides/borates have recently emerged as promising electrocatalytic materials for catalyzing hydrogen/oxygen evolution reactions(HER/OER) in inexpensive electrolyzers. However, so far, there has been little comprehensive summary of transition metal borides/borates. Here, this review provides the latest research progress on transition metal borides/borates for electrocatalytic water splitting. The structural characteristics of transition metal borides/borates and their synthesis methods in recent years are discussed. Then, the theoretical and experimental progress of transition metal borides including single-metal borides, multi-metal borides, borate derived and other nanocomposites containing boron(boron-doped nanocomposites/substrate with boron) in electrocatalytic reaction and the role of boron in regulating electrocatalytic performance are further emphasized. Finally, the potential challenges and future prospects of transition metal borides/borates in electrocatalysis are presented.
基金the Young Scientists Fund of the National Natural Science Foundation of China(Grant Nos.11704170 and 61705097)the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2016AP02 and ZR2016EMP01)。
文摘Using the evolutionary methodology for crystal structure prediction,we have predicted the orthorhombic Cmcm and Pnma phases for ScB_(4).The earlier proposed Cr B_(4)^(-),Fe B_(4)^(-),Mn B_(4)^(-),and Re P_(4)^(-)type structures for ScB_(4)are excluded.It is first discovered that the Cmcm phase transforms to the Pnma phase at about 18 GPa.Moreover,both phases are dynamically and mechanically stable.The large bulk modulus,shear modulus,and Young's modulus of the two phases make it an optimistic low compressible material.Moreover,the strong covalent bonding nature of ScB_(4)is confirmed by the ELF analysis.The strong covalent bonding contributes greatly to its stability.
基金supported by the National Natural Science Foundation of China (No. 20973174)973 Project (2007CB805307)
文摘In this paper, density functional computations have been applied to the structural, elastic and electronic properties of ternary transition metal diborides Re0.5Ir0.5B2, Re0.5Tc0.5B2, Os0.5W0.5B2 and Os0.5Ru0.5B2 in hexagonal (P63/mmc) and orthorhombic (Pmmn) structures with both local density approximation and generalized gradient approximation. LDA gives smaller lattice parameters and larger elastic moduli than GGA. Both results show that the hexagonal ones are more stable than orthorhombic ones except Os0.5Ru0.5B2. Moreover, the hexagonal structure has superior elastic property than orthorhombic one. Generally speaking, the calculated elastic moduli of Re0.5Ir0.5B2 and Os0.5Ru0.5B2 are smaller than those values of Re0.5Tc0.5B2 and Os0.5W0.5B2 within the same structure because of the filling of antibonding states. The relativistic effects result in weaker bonds of Tc-B (Ru-B) than those of Re-B (Os-B). All the diborides are ultra-incompressible. Re0.5Tc0.5B2 has the largest shear modulus and it is a promising superhard diboride like Os0.5W0.5B2. The elastic properties are in high correlation with the bond strength. The shear moduli are more sensitive than the bulk moduli to the bond strength.
基金supports from the National Natural Science Foundation of China under grant No. 51672064 and No. U1435206the Beijing Municipal Science & Technology Commission under grant No. Z151100003315012 and No. D161100002416001
文摘In this communication, the possibility for the preparation of two-dimensional MBene CrB from MAB phase Cr2AlB2 is demonstrated for the first time. Herein M is a transition metal, A is a group IIIAor IVA element and B is boron; MAB phases are layered transition metal ternary borides, MBene is used to emphasize the loss of A group element from the parent MAB phases and to highlight the 2 D nature. The possible 2 D CrB nano sheets are prepared by selectively etching out Al layers from Cr2AlB-2 by immersing the Cr2AlB2 powders in dilute HCl solution at room temperature. The as-prepared 2 D CrB nano sheets are examined using X-ray diffraction and scanning electron microscopy and energy dispersive X-ray spectroscopy(EDS). In addition, different structure models are built to explain the observed phenomena.The discovery in this work opens a door to the synthesis of a large number of new 2 D MBenes from MAB phases.