期刊文献+
共找到4,633篇文章
< 1 2 232 >
每页显示 20 50 100
Templated synthesis of transition metal phosphide electrocatalysts for oxygen and hydrogen evolution reactions 被引量:4
1
作者 Rose Anne Acedera Alicia Theresse Dumlao +4 位作者 DJ Donn Matienzo Maricor Divinagracia Julie Anne del Rosario Paraggua Po-Ya Abel Chuang Joey Ocon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期646-669,I0014,共25页
Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts... Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested. 展开更多
关键词 OER HER transition metal phosphide Templated synthesis ELECTROCATALYSTS
下载PDF
Recent advances in transition metal phosphide materials:Synthesis and applications in supercapacitors 被引量:1
2
作者 Ge Li Yu Feng +3 位作者 Yi Yang Xiaoliang Wu Xiumei Song Lichao Tan 《Nano Materials Science》 EI CAS CSCD 2024年第2期174-192,共19页
Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient elec... Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient electrode materials is the key to improve the performance of supercapacitors.As the battery-type materials,transition metal phosphides(TMPs)possess high theoretical specific capacity,good electrical conductivity and superior structural stability,which have been extensively studied to be electrode materials for supercapacitors.In this review,we summarize the up-to-date progress on TMPs materials from diversified synthetic methods,diverse nanostructures and several prominent TMPs and their composites in application of supercapacitors.In the end,we also propose the remaining challenges toward the rational discovery and synthesis of high-performance TMP electrodes materials for energy storage. 展开更多
关键词 transition metal phosphides Cobalt phosphide Nickel phosphides Electrode materials SUPERCAPACITOR
下载PDF
Synthesis and Modulation of Low-Dimensional Transition Metal Chalcogenide Materials via Atomic Substitution 被引量:1
3
作者 Xuan Wang Akang Chen +3 位作者 XinLei Wu Jiatao Zhang Jichen Dong Leining Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期49-94,共46页
In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart... In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized. 展开更多
关键词 transition metal chalcogenides Atomic substitution Ion exchange Low-dimensional materials Controllable synthesis
下载PDF
From VIB‑to VB‑Group Transition Metal Disulfides:Structure Engineering Modulation for Superior Electromagnetic Wave Absorption 被引量:1
4
作者 Junye Cheng Yongheng Jin +10 位作者 Jinghan Zhao Qi Jing Bailong Gu Jialiang Wei Shenghui Yi Mingming Li Wanli Nie Qinghua Qin Deqing Zhang Guangping Zheng Renchao Che 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期218-257,共40页
The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field... The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance. 展开更多
关键词 transition metal disulfides Electromagnetic wave absorption Impedance matching Structure engineering modulation
下载PDF
Progress on Transition Metal Ions Dissolution Suppression Strategies in Prussian Blue Analogs for Aqueous Sodium-/Potassium-Ion Batteries 被引量:1
5
作者 Wenli Shu Junxian Li +3 位作者 Guangwan Zhang Jiashen Meng Xuanpeng Wang Liqiang Mai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期142-168,共27页
Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonethel... Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries. 展开更多
关键词 Prussian blue analogs transition metal ions dissolution Suppression strategies Aqueous sodium-ion batteries Aqueous potassium-ion batteries
下载PDF
Unveiling the pressure-driven metal–semiconductor–metal transition in the doped TiS_(2)
6
作者 陈佳骏 吕心邓 +3 位作者 李思敏 但雅倩 黄艳萍 崔田 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期63-67,共5页
Conventional theories expect that materials under pressure exhibit expanded valence and conduction bands,leading to increased electrical conductivity.Here,we report the electrical properties of the doped 1T-TiS_(2) un... Conventional theories expect that materials under pressure exhibit expanded valence and conduction bands,leading to increased electrical conductivity.Here,we report the electrical properties of the doped 1T-TiS_(2) under high pressure by electrical resistance investigations,synchrotron x-ray diffraction,Raman scattering and theoretical calculations.Up to 70 GPa,an unusual metal-semiconductor-metal transition occurs.Our first-principles calculations suggest that the observed anti-Wilson transition from metal to semiconductor at 17 GPa is due to the electron localization induced by the intercalated Ti atoms.This electron localization is attributed to the strengthened coupling between the doped Ti atoms and S atoms,and the Anderson localization arising from the disordered intercalation.At pressures exceeding 30.5 GPa,the doped TiS_(2) undergoes a re-metallization transition initiated by a crystal structure phase transition.We assign the most probable space group as P2_(1)2_(1)2_(1).Our findings suggest that materials probably will eventually undergo the Wilson transition when subjected to sufficient pressure. 展开更多
关键词 high pressure transition metal dichalcogenides doped TiS_(2) electronic phase transition
下载PDF
Activating Ru in the pyramidal sites of Ru_(2)P-type structures with earth-abundant transition metals for achieving extremely high HER activity while minimizing noble metal content
7
作者 Sayed M.El-Refaei Patrícia A.Russo +4 位作者 Thorsten Schultz Zhe-Ning Chen Patrick Amsalem Norbert Koch Nicola Pinna 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期80-92,共13页
Rational design of efficient pH-universal hydrogen evolution reaction catalysts to enable large-scale hydrogen production via electrochemical water splitting is of great significance,yet a challenging task.Herein,Ru a... Rational design of efficient pH-universal hydrogen evolution reaction catalysts to enable large-scale hydrogen production via electrochemical water splitting is of great significance,yet a challenging task.Herein,Ru atoms in the Ru_(2)P structure were replaced with M=Co,Ni,or Mo to produce M_(2-x)Ru_(x)P nanocrystals.The metals show strong site preference,with Co and Ni occupying the tetrahedral sites and Ru the square pyramidal sites of the CoRuP and NiRuP Ru_(2)P-type structures.The presence of Co or Ni in the tetrahedral sites leads to charge redistribution for Ru and,according to density functional theory calculations,a significant increase in the Ru d-band centers.As a result,the intrinsic activity of CoRuP and NiRuP increases considerably compared to Ru_(2)P in both acidic and alkaline media.The effect is not observed for MoRuP,in which Mo prefers to occupy the pyramidal sites.In particular,CoRuP shows state-of-the-art activity,outperforming Ru_(2)P with Pt-like activity in 0.5 M H_(2)SO_(4)(η10=12.3 mV;η100=52 mV;turnover frequency(TOF)=4.7 s^(-1)).It remains extraordinarily active in alkaline conditions(η10=12.9 mV;η100=43.5 mV)with a TOF of 4.5 s^(-1),which is 4x higher than that of Ru_(2)P and 10x that of Pt/C.Further increase in the Co content does not lead to drastic loss of activity,especially in alkaline medium,where,for example,the TOF of Co_(1.9)Ru_(0.1)P remains comparable to that of Ru_(2)P and higher than that of Pt/C,highlighting the viability of the adopted approach to prepare cost-efficient catalysts. 展开更多
关键词 electrocatalysis ruthenium phosphide transition metal phosphonates
下载PDF
A Review on Engineering Transition Metal Compound Catalysts to Accelerate the Redox Kinetics of Sulfur Cathodes for Lithium–Sulfur Batteries
8
作者 Liping Chen Guiqiang Cao +8 位作者 Yong Li Guannan Zu Ruixian Duan Yang Bai Kaiyu Xue Yonghong Fu Yunhua Xu Juan Wang Xifei Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期300-332,共33页
Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review f... Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review focuses on engineering TMCs catalysts by cation doping/anion doping/dual doping,bimetallic/bi-anionic TMCs,and TMCs-based heterostructure composites.It is obvious that introducing cations/anions to TMCs or constructing heterostructure can boost adsorption-catalytic capacity by regulating the electronic structure including energy band,d/p-band center,electron filling,and valence state.Moreover,the elec-tronic structure of doped/dual-ionic TMCs are adjusted by inducing ions with different electronegativity,electron filling,and ion radius,resulting in electron redistribution,bonds reconstruction,induced vacancies due to the electronic interaction and changed crystal structure such as lat-tice spacing and lattice distortion.Different from the aforementioned two strategies,heterostructures are constructed by two types of TMCs with different Fermi energy levels,which causes built-in electric field and electrons transfer through the interface,and induces electron redistribution and arranged local atoms to regulate the electronic structure.Additionally,the lacking studies of the three strategies to comprehensively regulate electronic structure for improving catalytic performance are pointed out.It is believed that this review can guide the design of advanced TMCs catalysts for boosting redox of lithium sulfur batteries. 展开更多
关键词 Lithium–sulfur battery Redox kinetic transition metal compounds catalyst Multiple metals/anions
下载PDF
Atomically Substitutional Engineering of Transition Metal Dichalcogenide Layers for Enhancing Tailored Properties and Superior Applications
9
作者 Zhaosu Liu Si Yin Tee +1 位作者 Guijian Guan Ming‑Yong Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期248-284,共37页
Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behav... Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field. 展开更多
关键词 transition metal dichalcogenides Atomic substitution Tailored structure Tunable bandgap Enhanced applications
下载PDF
Catalytic Effect of Transition Metal Complexes of Triaminoguanidine on the Thermolysis of Energetic NC/DEGDN Composite
10
作者 Mohammed Dourari Ahmed Fouzi Tarchoun +4 位作者 Djalal Trache Amir Abdelaziz Roufaida Tiliouine Tessnim Barkat Weiqiang Pang 《火炸药学报》 EI CAS CSCD 北大核心 2024年第3期209-219,I0003,共12页
The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and ... The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and diethylene glycol dinitrate,has been investigated.Extensive characterization of the resulting energetic composites was carried out using scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and differential scanning calorimetry(DSC).Isoconversional kinetic analysis was performed to determine the Arrhenius parameters associated with the thermolysis of the elaborated energetic formulations.It is found that TAG-M complexes have strong catalytic effect on the thermo-kinetic decomposition of NC/DEGDN by decreasing the apparent activation energy and significantly increased the total heat release.The models that govern the decomposition processes are also studied,and it is revealed that different reaction processes are accomplished by introduction metal complexes of triaminoguanidine.Overall,this study serves as a valuable reference for future research focused on the investigation of catalytic combustion features of solid propellants. 展开更多
关键词 triaminoguanidine transition metal complexes NITROCELLULOSE diethylene glycol dinitrate catalytic effect
下载PDF
The effect of the carbon components on the performance of carbonbased transition metal electrocatalysts for the hydrogen evolution reaction
11
作者 LI Guo-hua WANG Jing +6 位作者 REN Jin-tian LIU Hong-chen QIAN Jin-xiu CHENG Jia-ting ZHAO Mei-tong YANG Fan LI Yong-feng 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期946-972,共27页
The hydrogen evolution reaction(HER)is a promising way to produce hydrogen,and the use of non-precious metals with an excellent electrochemical performance is vital for this.Carbon-based transition metal catalysts hav... The hydrogen evolution reaction(HER)is a promising way to produce hydrogen,and the use of non-precious metals with an excellent electrochemical performance is vital for this.Carbon-based transition metal catalysts have high activity and stability,which are important in reducing the cost of hydrogen production and promoting the development of the hydrogen production industry.However,there is a lack of discussion regarding the effect of carbon components on the performance of these electrocatalysts.This review of the literature discusses the choice of the carbon components in these catalysts and their impact on catalytic performance,including electronic structure control by heteroatom doping,morphology adjustment,and the influence of self-supporting materials.It not only analyzes the progress in HER,but also provides guidance for synthesizing high-performance carbon-based transition metal catalysts. 展开更多
关键词 Carbon-based transition metal catalysts Heteroatom doping Morphology adjustment Self-supporting materials Hydrogen evolution reaction
下载PDF
Mass-Based Environmental Factor and Energy Assessment of Microwave-Assisted Synthesized Transition Metal Nanostructures
12
作者 Victor J. Law 《American Journal of Analytical Chemistry》 CAS 2024年第6期201-218,共18页
This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy... This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy budget (measured in kJ) on the horizontal axes and process density (measured in kJg−1) on the vertical axes. These two axes allow both mass usage efficiency (Environmental-Factor) and energy efficiency to be evaluated for a range of microwave applicator and metal synthesis. The metrics are allied to the: second, sixth and eleventh principle of the twelve principle of Green Chemistry. This analytical approach to microwave synthesis (widely considered as a useful Green Chemistry energy source) allows a quantified dynamic environmental quotient to be given to renewable plant-based biomass associated with the reduction of the metal precursors. Thus allowing a degree of quantification of claimed “eco-friendly” and “sustainable” synthesis with regard to waste production and energy usage. 展开更多
关键词 Microwave-Assisted Synthesis transition metals Nanostructures Allometry Scaling Power-Law Signature Green Chemistry
下载PDF
Quantitative determination of the critical points of Mott metal–insulator transition in strongly correlated systems
13
作者 牛月坤 倪煜 +4 位作者 王建利 陈雷鸣 邢晔 宋筠 冯世平 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期647-652,共6页
Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transiti... Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points. 展开更多
关键词 critical point metal–insulator transition local quantum state fidelity strongly correlated system quasiparticle coherent weight
下载PDF
Recent Advances of Transition Metal Basic Salts for Electrocatalytic Oxygen Evolution Reaction and Overall Water Electrolysis 被引量:13
14
作者 Bingrong Guo Yani Ding +4 位作者 Haohao Huo Xinxin Wen Xiaoqian Ren Ping Xu Siwei Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期238-260,共23页
Electrocatalytic oxygen evolution reaction(OER)has been recognized as the bottleneck of overall water splitting,which is a promising approach for sustainable production of H_(2).Transition metal(TM)hydroxides are the ... Electrocatalytic oxygen evolution reaction(OER)has been recognized as the bottleneck of overall water splitting,which is a promising approach for sustainable production of H_(2).Transition metal(TM)hydroxides are the most conventional and classical non-noble metal-based electrocatalysts for OER,while TM basic salts[M^(2+)(OH)_(2-x)(A_(m^(-))_(x/m),A=CO_(3)^(2−),NO_(3)^(−),F^(−),Cl^(−)]consisting of OH−and another anion have drawn extensive research interest due to its higher catalytic activity in the past decade.In this review,we summarize the recent advances of TM basic salts and their application in OER and further overall water splitting.We categorize TM basic salt-based OER pre-catalysts into four types(CO_(3)^(2−),NO_(3)^(−),F^(−),Cl^(−)according to the anion,which is a key factor for their outstanding performance towards OER.We highlight experimental and theoretical methods for understanding the structure evolution during OER and the effect of anion on catalytic performance.To develop bifunctional TM basic salts as catalyst for the practical electrolysis application,we also review the present strategies for enhancing its hydrogen evolution reaction activity and thereby improving its overall water splitting performance.Finally,we conclude this review with a summary and perspective about the remaining challenges and future opportunities of TM basic salts as catalysts for water electrolysis. 展开更多
关键词 transition metal basic salts ELECTROCATALYTIC Oxygen evolution reaction(OER) Overall water electrolysis
下载PDF
Pressure-induced structural,electronic,and superconducting phase transitions in TaSe_(3)
15
作者 Yuhang Li Pei Zhou +3 位作者 Chi Ding Qing Lu Xiaomeng Wang Jian Sun 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期88-94,共7页
TaSe_(3)has garnered significant research interests due to its unique quasi-one-dimensional crystal structure,which gives rise to distinctive properties.Using crystal structure search and first-principles calculations... TaSe_(3)has garnered significant research interests due to its unique quasi-one-dimensional crystal structure,which gives rise to distinctive properties.Using crystal structure search and first-principles calculations,we systematically investigated the pressure-induced structural and electronic phase transitions of quasi-one-dimensional TaSe_(3)up to 100 GPa.In addition to the ambient pressure phase(P2_(1)/m-I),we identified three high-pressure phases:P2_(1)/m-II,Pnma,and Pmma.For the P2_(1)/m-I phase,the inclusion of spin-orbit coupling(SOC)results in significant SOC splitting and changes in the band inversion characteristics.Furthermore,band structure calculations for the three high-pressure phases indicate metallic natures,and the electron localization function suggests ionic bonding between Ta and Se atoms.Our electron-phonon coupling calculations reveal a superconducting critical temperature of approximately 6.4 K for the Pmma phase at 100 GPa.This study provides valuable insights into the high-pressure electronic behavior of quasi-one-dimensional TaSe_(3). 展开更多
关键词 high pressure transition metal trichalcogenides phase transition SUPERCONDUCTIVITY
下载PDF
A review on the synthesis of transition metal nitride nanostructures and their energy related applications 被引量:4
16
作者 Qiao Luo Congcong Lu +1 位作者 Lingran Liu Maiyong Zhu 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期406-437,共32页
Transition metal nitrides(TMN)have recently grabbed immensely appealing as ideal active materials in energy storage and catalysis fields on account of their remarkable electrical conductivity,excellent chemical stabil... Transition metal nitrides(TMN)have recently grabbed immensely appealing as ideal active materials in energy storage and catalysis fields on account of their remarkable electrical conductivity,excellent chemical stability,wide band gap and tunable morphology.Both pure TMN and TMN-based materials have been extensively studied concerned with their preparation approaches,nanostructures,and favored performance in various applications.However,the processes towards synthesis of TMN are numerous and complex.Choosing appropriate method to obtain target TMN with desired structure is crucial,which further affects its practical application performance.Herein,this review offers a timely and comprehensive summary of the synthetic ways to TMN and their application in energy related domains.The synthesis section is categorized into in-situ and ex-situ based on where the N element in TMN origins from.Then,overviews on the energy related applications including energy storage,electrocatalysis and photocatalysis are discussed.In the end,the problems to be solved and the development trend of the synthesis and application of transition metal nitrides are prospected. 展开更多
关键词 transition metal nitride IN-SITU Ex-situ Energy storage ELECTROCATALYSIS PHOTOCATALYSIS
下载PDF
Defect-engineered two-dimensional transition metal dichalcogenides towards electrocatalytic hydrogen evolution reaction 被引量:5
17
作者 Hang Su Xiaodong Pan +2 位作者 Suqin Li Hao Zhang Ruqiang Zou 《Carbon Energy》 SCIE CSCD 2023年第6期21-44,共24页
Recently,two-dimensional transition metal dichalcogenides(TMDs)demonstrated their great potential as cost-effective catalysts in hydrogen evolution reaction.Herein,we systematically summarize the existing defect engin... Recently,two-dimensional transition metal dichalcogenides(TMDs)demonstrated their great potential as cost-effective catalysts in hydrogen evolution reaction.Herein,we systematically summarize the existing defect engineering strategies,including intrinsic defects(atomic vacancy and active edges)and extrinsic defects(metal doping,nonmetal doping,and hybrid doping),which have been utilized to obtain advanced TMD-based electrocatalysts.Based on theoretical simulations and experimental results,the electronic structure,intermediate adsorption/desorption energies and possible catalytic mechanisms are thoroughly discussed.Particular emphasis is given to the intrinsic relationship between various types of defects and electrocatalytic properties.Furthermore,current opportunities and challenges for mechanical investigations and applications of defective TMD-based catalysts are presented.The aim herein is to reveal the respective properties of various defective TMD catalysts and provide valuable insights for fabricating high-efficiency TMD-based electrocatalysts. 展开更多
关键词 defect engineering ELECTROCATALYSTS hydrogen evolution reaction(HER) transition metal dichalcogenides
下载PDF
Current advances of transition metal dichalcogenides in electromagnetic wave absorption:A brief review 被引量:3
18
作者 Shijie Zhang Jiying Li +1 位作者 Xiaotian Jin Guanglei Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第3期428-445,共18页
Transition metal dichalcogenides(TMDs)show great advantages in electromagnetic wave(EMW)absorption due to their unique structure and electrical properties.Tremendous research works on TMD-based EMW absorbers have been... Transition metal dichalcogenides(TMDs)show great advantages in electromagnetic wave(EMW)absorption due to their unique structure and electrical properties.Tremendous research works on TMD-based EMW absorbers have been conducted in the last three years,and the comprehensive and systematical summary is still a rarity.Therefore,it is of great significance to elaborate on the interaction among the morphologies,structures,phases,components,and EMW absorption performances of TMD-based absorbers.This review is devoted to analyzing TMD-based absorbers from the following perspectives:the EMW absorption regulation strategies of TMDs and the latest progress of TMD-based hybrids as EMW absorbers.The absorption mechanisms and component-performance dependency of these achievements are also summarized.Finally,a straightforward insight into industrial revolution upgrading in this promising field is proposed. 展开更多
关键词 transition metal dichalcogenides phase manipulation HYBRIDS hierarchical structure absorption mechanism
下载PDF
Boosting Lean Electrolyte Lithium-Sulfur Battery Performance with Transition Metals: A Comprehensive Review 被引量:3
19
作者 Hui Pan Zhibin Cheng +8 位作者 Zhenyu Zhou Sijie Xie Wei Zhang Ning Han Wei Guo Jan Fransaer Jiangshui Luo Andreu Cabot Michael Wübbenhorst 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期53-100,共48页
Lithium–sulfur(Li–S) batteries have received widespread attention, and lean electrolyte Li–S batteries have attracted additional interest because of their higher energy densities. This review systematically analyze... Lithium–sulfur(Li–S) batteries have received widespread attention, and lean electrolyte Li–S batteries have attracted additional interest because of their higher energy densities. This review systematically analyzes the effect of the electrolyte-to-sulfur(E/S) ratios on battery energy density and the challenges for sulfur reduction reactions(SRR) under lean electrolyte conditions. Accordingly, we review the use of various polar transition metal sulfur hosts as corresponding solutions to facilitate SRR kinetics at low E/S ratios(< 10 μL mg~(-1)), and the strengths and limitations of different transition metal compounds are presented and discussed from a fundamental perspective. Subsequently, three promising strategies for sulfur hosts that act as anchors and catalysts are proposed to boost lean electrolyte Li–S battery performance. Finally, an outlook is provided to guide future research on high energy density Li–S batteries. 展开更多
关键词 transition metals Lean electrolyte Sulfur reduction reactions Li–S batteries
下载PDF
MoiréDirac fermions in transition metal dichalcogenides heterobilayers 被引量:1
20
作者 车成龙 吕亚威 童庆军 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期31-37,共7页
Monolayer group-VIB transition metal dichalcogenides(TMDs)feature low-energy massive Dirac fermions,which have valley contrasting Berry curvature.This nontrivial local band topology gives rise to valley Hall transport... Monolayer group-VIB transition metal dichalcogenides(TMDs)feature low-energy massive Dirac fermions,which have valley contrasting Berry curvature.This nontrivial local band topology gives rise to valley Hall transport and optical selection rules for interband transitions that open up new possibilities for valleytronics.However,the large bandgap in TMDs results in relatively small Berry curvature,leading to weak valley contrasting physics in practical experiments.Here,we show that Dirac fermions with tunable large Berry curvature can be engineered in moirésuperlattice of TMD heterobilayers.These moiréDirac fermions are created in a magnified honeycomb lattice with its sublattice degree of freedom formed by two local moirépotential minima.We show that applying an on-site potential can tune the moiréflat bands into helical ones.In short-period moirésuperlattice,we find that the two moirévalleys become asymmetric,which results in a net spin Hall current.More interestingly,a circularly polarized light drives these moiréDirac fermions into quantum anomalous Hall phase with chiral edge states.Our results open a new possibility to design the moiré-scale spin and valley physics using TMD moiréstructures. 展开更多
关键词 moirésuperlattice valleytronics transition metal dichalcogenide quantum anomalous Hall state
下载PDF
上一页 1 2 232 下一页 到第
使用帮助 返回顶部