期刊文献+
共找到171篇文章
< 1 2 9 >
每页显示 20 50 100
Atomically Substitutional Engineering of Transition Metal Dichalcogenide Layers for Enhancing Tailored Properties and Superior Applications
1
作者 Zhaosu Liu Si Yin Tee +1 位作者 Guijian Guan Ming‑Yong Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期248-284,共37页
Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behav... Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field. 展开更多
关键词 transition metal dichalcogenides Atomic substitution Tailored structure Tunable bandgap Enhanced applications
下载PDF
Current advances of transition metal dichalcogenides in electromagnetic wave absorption:A brief review 被引量:3
2
作者 Shijie Zhang Jiying Li +1 位作者 Xiaotian Jin Guanglei Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第3期428-445,共18页
Transition metal dichalcogenides(TMDs)show great advantages in electromagnetic wave(EMW)absorption due to their unique structure and electrical properties.Tremendous research works on TMD-based EMW absorbers have been... Transition metal dichalcogenides(TMDs)show great advantages in electromagnetic wave(EMW)absorption due to their unique structure and electrical properties.Tremendous research works on TMD-based EMW absorbers have been conducted in the last three years,and the comprehensive and systematical summary is still a rarity.Therefore,it is of great significance to elaborate on the interaction among the morphologies,structures,phases,components,and EMW absorption performances of TMD-based absorbers.This review is devoted to analyzing TMD-based absorbers from the following perspectives:the EMW absorption regulation strategies of TMDs and the latest progress of TMD-based hybrids as EMW absorbers.The absorption mechanisms and component-performance dependency of these achievements are also summarized.Finally,a straightforward insight into industrial revolution upgrading in this promising field is proposed. 展开更多
关键词 transition metal dichalcogenides phase manipulation HYBRIDS hierarchical structure absorption mechanism
下载PDF
Defect-engineered two-dimensional transition metal dichalcogenides towards electrocatalytic hydrogen evolution reaction 被引量:1
3
作者 Hang Su Xiaodong Pan +2 位作者 Suqin Li Hao Zhang Ruqiang Zou 《Carbon Energy》 SCIE CSCD 2023年第6期21-44,共24页
Recently,two-dimensional transition metal dichalcogenides(TMDs)demonstrated their great potential as cost-effective catalysts in hydrogen evolution reaction.Herein,we systematically summarize the existing defect engin... Recently,two-dimensional transition metal dichalcogenides(TMDs)demonstrated their great potential as cost-effective catalysts in hydrogen evolution reaction.Herein,we systematically summarize the existing defect engineering strategies,including intrinsic defects(atomic vacancy and active edges)and extrinsic defects(metal doping,nonmetal doping,and hybrid doping),which have been utilized to obtain advanced TMD-based electrocatalysts.Based on theoretical simulations and experimental results,the electronic structure,intermediate adsorption/desorption energies and possible catalytic mechanisms are thoroughly discussed.Particular emphasis is given to the intrinsic relationship between various types of defects and electrocatalytic properties.Furthermore,current opportunities and challenges for mechanical investigations and applications of defective TMD-based catalysts are presented.The aim herein is to reveal the respective properties of various defective TMD catalysts and provide valuable insights for fabricating high-efficiency TMD-based electrocatalysts. 展开更多
关键词 defect engineering ELECTROCATALYSTS hydrogen evolution reaction(HER) transition metal dichalcogenides
下载PDF
Hydrogenic donor impurity states and intersubband optical absorption spectra of monolayer transition metal dichalcogenides in dielectric environments
4
作者 吴曙东 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期619-626,共8页
The hydrogenic donor impurity states and intersubband optical absorption spectra in monolayer transition metal dichalcogenides(ML TMDs) under dielectric environments are theoretically investigated based on a two-dimen... The hydrogenic donor impurity states and intersubband optical absorption spectra in monolayer transition metal dichalcogenides(ML TMDs) under dielectric environments are theoretically investigated based on a two-dimensional(2D)nonorthogonal associated Laguerre basis set. The 2D quantum confinement effect together with the strongly reduced dielectric screening results in the strong attractive Coulomb potential between electron and donor ion, with exceptionally large impurity binding energy and huge intersubband oscillator strength. These lead to the strong interaction of the electron with light in a 2D regime. The intersubband optical absorption spectra exhibit strong absorption lines of the non-hydrogenic Rydberg series in the mid-infrared range of light. The strength of the Coulomb potential can be controlled by changing the dielectric environment. The electron affinity difference leads to charge transfer between ML TMD and the dielectric environment, generating the polarization-electric field in ML TMD accompanied by weakening the Coulomb interaction strength. The larger the dielectric constant of the dielectric environment, the more the charge transfer is, accompanied by the larger polarization-electric field and the stronger dielectric screening. The dielectric environment is shown to provide an efficient tool to tune the wavelength and output of the mid-infrared intersubband devices based on ML TMDs. 展开更多
关键词 monolayer transition metal dichalcogenides hydrogenic donor impurity intersubband optical absorption dielectric environment nonorthogonal associated Laguerre basis
下载PDF
MoiréDirac fermions in transition metal dichalcogenides heterobilayers
5
作者 车成龙 吕亚威 童庆军 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期31-37,共7页
Monolayer group-VIB transition metal dichalcogenides(TMDs)feature low-energy massive Dirac fermions,which have valley contrasting Berry curvature.This nontrivial local band topology gives rise to valley Hall transport... Monolayer group-VIB transition metal dichalcogenides(TMDs)feature low-energy massive Dirac fermions,which have valley contrasting Berry curvature.This nontrivial local band topology gives rise to valley Hall transport and optical selection rules for interband transitions that open up new possibilities for valleytronics.However,the large bandgap in TMDs results in relatively small Berry curvature,leading to weak valley contrasting physics in practical experiments.Here,we show that Dirac fermions with tunable large Berry curvature can be engineered in moirésuperlattice of TMD heterobilayers.These moiréDirac fermions are created in a magnified honeycomb lattice with its sublattice degree of freedom formed by two local moirépotential minima.We show that applying an on-site potential can tune the moiréflat bands into helical ones.In short-period moirésuperlattice,we find that the two moirévalleys become asymmetric,which results in a net spin Hall current.More interestingly,a circularly polarized light drives these moiréDirac fermions into quantum anomalous Hall phase with chiral edge states.Our results open a new possibility to design the moiré-scale spin and valley physics using TMD moiréstructures. 展开更多
关键词 moirésuperlattice valleytronics transition metal dichalcogenide quantum anomalous Hall state
下载PDF
Growing Biomorphic Transition Metal Dichalcogenides and Their Alloys Toward High Permeable Membranes and Efficient Electrocatalysts Applications
6
作者 Lijie Zhu Yahuan Huan +5 位作者 Zhaoqian Zhang Pengfei Yang Jingyi Hu Yuping Shi Fangfang Cui Yanfeng Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期150-160,共11页
3D architecratured transition metal dichalcogenides constructed by atomically thin layers are appealing building blocks in various applications,such as catalysts,energy storage,conversions,sensors,and so on.However,th... 3D architecratured transition metal dichalcogenides constructed by atomically thin layers are appealing building blocks in various applications,such as catalysts,energy storage,conversions,sensors,and so on.However,the direct growth of 3D transition metal dichalcogenides architectures with high crystal quality and well-controlled size/thickness remains a huge challenge.Herein,we report a facile,highly-repeatable,and versatile chemical vapor deposition strategy,for the mass production of high-quality 3D-architecratured transition metal dichalcogenides(e.g.,MoS_(2),WS_(2),and ReS_(2))and their alloys(e.g.,W_(x)Mo(1–x)S_(2)and Rex Mo_((1–x))S_(2))nanosheets on naturally abundant and low-cost diatomite templates.Particularly,the purified transition metal dichalcogenides products exhibit unique and designable 3D biomorphic hierarchical microstructures,controllable layer thicknesses,tailorable chemical compositions,and good crystallinities.The weak interlayer interactions endow them with good dispersity in solutions to form stable additive-free inks for solution-processing-based applications,for example,high-permeable and high-stable separation membranes for water purification,and efficient electrocatalysts for hydrogen evolution reactions.This work paves ways for the low-cost,mass production of versatile transition metal dichalcogenides powder-like materials with designable structures and properties,toward energy/environmental-related applications and beyond. 展开更多
关键词 biomorphic chemical vapor deposition hydrogen evolution reactions separation membranes transition metal dichalcogenides
下载PDF
Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
7
作者 王子禄 董皓宇 +2 位作者 周伟昌 程志海 王善才 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期90-95,共6页
Layered transition metal dichalcogenides(TMDCs)gained widespread attention because of their electron-correlationrelated physics,such as charge density wave(CDW),superconductivity,etc.In this paper,we report the high-r... Layered transition metal dichalcogenides(TMDCs)gained widespread attention because of their electron-correlationrelated physics,such as charge density wave(CDW),superconductivity,etc.In this paper,we report the high-resolution angle-resolved photoemission spectroscopy(ARPES)studies on the electronic structure of Ti-doped 1T-Ti_(x)Ta_(1-x)S_(2) with different doping levels.We observe a flat band that originates from the formation of the star of David super-cell at the x=5%sample at the low temperature.With the increasing Ti doping levels,the flat band vanishes in the x=8%sample due to the extra hole carrier.We also find the band shift and variation of the CDW gap caused by the Ti-doping.Meanwhile,the band folding positions and the CDW vector g_(CDW)intact.Our ARPES results suggest that the localized flat band and the correlation effect in the 1T-TMDCs could be tuned by changing the filling factor through the doping electron or hole carriers.The Ti-doped 1T-Ti_(x)Ta_(1-x)S_(2) provides a platform to fine-tune the electronic structure evolution and a new insight into the strongly correlated physics in the TMDC materials. 展开更多
关键词 transition metal dichalcogenides charge density wave electronic structure angle-resolved photoemission spectroscopy(ARPES)
下载PDF
Valley polarization in transition metal dichalcogenide layered semiconductors:Generation,relaxation,manipulation and transport
8
作者 马惠 朱耀杰 +4 位作者 刘宇伦 白瑞雪 张喜林 任琰博 蒋崇云 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期1-14,共14页
In recent years,valleytronics researches based on 2D semiconducting transition metal dichalcogenides have attracted considerable attention.On the one hand,strong spin–orbit interaction allows the presence of spin–va... In recent years,valleytronics researches based on 2D semiconducting transition metal dichalcogenides have attracted considerable attention.On the one hand,strong spin–orbit interaction allows the presence of spin–valley coupling in this system,which provides spin addressable valley degrees of freedom for information storage and processing.On the other hand,large exciton binding energy up to hundreds of me V enables excitons to be stable carriers of valley information.Valley polarization,marked by an imbalanced exciton population in two inequivalent valleys(+K and-K),is the core of valleytronics as it can be utilized to store binary information.Motivated by the potential applications,we present a thorough overview of the recent advancements in the generation,relaxation,manipulation,and transport of the valley polarization in nonmagnetic transition metal dichalcogenide layered semiconductors.We also discuss the development of valleytronic devices and future challenges in this field. 展开更多
关键词 valley polarization nonmagnetic transition metal dichalcogenide layered semiconductors EXCITON
下载PDF
Photodetectors based on junctions of two-dimensional transition metal dichalcogenides 被引量:4
9
作者 魏侠 闫法光 +2 位作者 申超 吕全山 王开友 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期174-188,共15页
Transition metal dichalcogenides (TMDCs) have gained considerable attention because of their novel properties and great potential applications. The flakes of TMDCs not only have great light absorption from visible t... Transition metal dichalcogenides (TMDCs) have gained considerable attention because of their novel properties and great potential applications. The flakes of TMDCs not only have great light absorption from visible to near infrared, but also can be stacked together regardless of lattice mismatch like other two-dimensional (2D) materials. Along with the studies on intrinsic properties of TMDCs, the junctions based on TMDCs become more and more important in applications of photodetection. The junctions have shown many exciting possibilities to fully combine the advantages of TMDCs, other 2D materials, conventional and organic semiconductors together. Early studies have greatly enriched the application of TMDCs in photodetection. In this review, we investigate the efforts in photodetectors based on the junctions of TMDCs and analyze the properties of those photodetectors. Homojunctions based on TMDCs can be made by surface chemical doping, elemental doping and electrostatic gating. Heterojunction formed between TMDCs/2D materials, TMDCs/conventional semiconductors and TMDCs/organic semiconductor also deserve more attentions. We also compare the advantages and disadvantages of different junctions, and then give the prospects for the development of junctions based on TMDCs. 展开更多
关键词 transition metal dichalcogenides HOMOJUNCTION HETEROJUNCTION PHOTODETECTOR
下载PDF
Catalyst activation: Surface doping effects of group Ⅵ transition metal dichalcogenides towards hydrogen evolution reaction in acidic media 被引量:3
10
作者 Bibi Ruqi Mrinal Kanti Kabiraz +1 位作者 Jong Wook Hong Sang-Il Choi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期217-240,I0007,共25页
Two-dimensional(2D) transition metal dichalcogenides(TMDs) have emerged as promising alternatives to the platinum-based catalysts for hydrogen evolution reaction(HER). The edge site of these2D materials exhibits HER-a... Two-dimensional(2D) transition metal dichalcogenides(TMDs) have emerged as promising alternatives to the platinum-based catalysts for hydrogen evolution reaction(HER). The edge site of these2D materials exhibits HER-active properties, whereas the large-area basal plane is inactive.Therefore, recent studies and methodologies have been investigated to improve the performance of TMD-based materials by activating inactive sites through elemental doping strategies. In this review,we focus on the metal and non-metal dopant effects on group VI TMDs such as MoS_(2) MoSe_(2) WS_(2)and WSe_(2) for promoting HER performances in acidic electrolytes. A general introduction to the HER is initially provided to explain the parameters in accessing the catalytic performance of dopedTMDs. Then, synthetic methods for doped-TMDs and their HER performances are introduced in order to understand the effect of various dopants including metallic and non-metallic elements. Finally, the current challenges and future opportunities are summarized to provide insights into developing highly active and stable doped-TMD materials and valuable guidelines for engineering TMD-based nanocatalysts for practical water splitting technologies. 展开更多
关键词 2D materials transition metal dichalcogenides Dopant effect Catalytic surface Hydrogen evolution reaction
下载PDF
Dual bound states in the continuum enhanced second harmonic generation with transition metal dichalcogenides monolayer 被引量:2
11
作者 Peilong Hong Lei Xu Mohsen Rahmani 《Opto-Electronic Advances》 SCIE EI CAS 2022年第7期16-23,共8页
The emergence of two dimensional(2D)materials has opened new possibilities for exhibiting second harmonic genera-tion(SHG)at the nanoscale,due to their remarkable optical response related to stable excitons at room te... The emergence of two dimensional(2D)materials has opened new possibilities for exhibiting second harmonic genera-tion(SHG)at the nanoscale,due to their remarkable optical response related to stable excitons at room temperature.However,the ultimate atomic-scale interaction length with light makes the SHG of Transition Metal Dichalcogenides(TM-Ds)monolayers naturally weak.Here,we propose coupling a monolayer of TMDs with a photonic grating slab that works with doubly resonant bound states in the continuum(BIC).The BIC slabs are designed to exhibit a pair of BICs,reson-ant with both the fundamental wave(FW)and the second harmonic wave(SHW).Firstly,the spatial mode matching can be fulfilled by tilting FW's incident angle.We theoretically demonstrate that this strategy leads to more than four orders of magnitude enhancement of SHG efficiency than a sole monolayer of TMDs,under a pump light intensity of 0.1 GW/cm^(2).Moreover,we demonstrate that patterning the TMDs monolayer can further enhance the spatial overlap coefficient,which leads to an extra three orders of magnitude enhancement of SHG efficiency.These results demonstrate remarkable pos-sibilities for enhancing SHG with nonlinear 2D materials,opening many opportunities for chip-based light sources,nano-lasers,imaging,and biochemical sensing. 展开更多
关键词 second harmonic generation transition metal dichalcogenides bound state in the continuum photonic grating slab
下载PDF
In situ TEM revealing the effects of dislocations on lithium-ion migration in transition metal dichalcogenides 被引量:1
12
作者 Ruiwen Shao Chengkai Yang +8 位作者 Chen Yang Shulin Chen Weikang Dong Bairong Li Xiumei Ma Jing Lu Lixin Dong Peng Gao Dapeng Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期280-284,共5页
The two-dimensional (2D) structure of layered transition metal dichalcogenides (TMDs) provides unusual physical properties [1,2]and chemical reactivity [3,4], which can be influenced by defects such as dislocations [5... The two-dimensional (2D) structure of layered transition metal dichalcogenides (TMDs) provides unusual physical properties [1,2]and chemical reactivity [3,4], which can be influenced by defects such as dislocations [5,6]. For example, dislocations can act as nucleation sites for the onset of deformation when subjected to stress [7]. 展开更多
关键词 BATTERIES DEFECT Structure–property relationships ELECTRODES transition metal dichalcogenides
下载PDF
In-situ surface self-reconstruction in ternary transition metal dichalcogenide nanorod arrays enables efficient electrocatalytic oxygen evolution 被引量:1
13
作者 Qiang Chen Yulu Fu +8 位作者 Jialun Jin Wenjie Zang Xiong Liu Xiangyong Zhang Wenzhong Huang Zongkui Kou John Wang Liang Zhou Liqiang Mai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期10-16,共7页
Water splitting has received more and more attention because of its huge potential to generate clean and renewable energy.The highly active and durable oxygen evolution reaction(OER)catalysts play a decisive factor in... Water splitting has received more and more attention because of its huge potential to generate clean and renewable energy.The highly active and durable oxygen evolution reaction(OER)catalysts play a decisive factor in achieving efficient water splitting.The identification of authentic active origin under the service conditions can prompt a more reasonable design of catalysts together with well-confined micro-/nano-structures to boost the efficiency of water splitting.Herein,Fe,Co,and Ni ternary transition metal dichalcogenide(FCND)nanorod arrays on Ni foam are purposely designed as an active and stable low-cost OER pre-catalyst for the electrolysis of water in alkaline media.The optimized FCND catalyst demonstrated a lower overpotential than the binary and unary counterparts,and a 27-fold rise in kinetic current density at the overpotential of 300 m V compared to the nickel dichalcogenide counterpart.Raman spectra and other structural characterizations at different potentials reveal that the in-situ surface self-reconstruction from FCND to ternary transition metal oxyhydroxides(FCNOH)on catalyst surfaces initiated at about 1.5 V,which is identified as the origin of OER activity.The surface selfreconstruction towards FCNOH also enables excellent stability,without fading upon the test for 50 h. 展开更多
关键词 Surface self-reconstruction transition metal dichalcogenide transition metal oxyhydroxide Oxygen evolution reaction Water splitting
下载PDF
Electronic structures and elastic properties of monolayer and bilayer transition metal dichalcogenides MX_2(M= Mo,W;X= O,S,Se,Te):A comparative first-principles study 被引量:5
14
作者 曾范 张卫兵 唐壁玉 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期436-443,共8页
First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vd W-DF functional in the form of opt B88-vd W, have been performed to investigate the electronic and elastic prope... First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vd W-DF functional in the form of opt B88-vd W, have been performed to investigate the electronic and elastic properties of twodimensional transition metal dichalcogenides(TMDCs) with the formula of MX2(M = Mo, W; X = O, S, Se, Te) in both monolayer and bilayer structures. The calculated band structures show a direct band gap for monolayer TMDCs at the K point except for MoO2 and WO2. When the monolayers are stacked into a bilayer, the reduced indirect band gaps are found except for bilayer WTe2, in which the direct gap is still present at the K point. The calculated in-plane Young moduli are comparable to that of graphene, which promises possible application of TMDCs in future flexible and stretchable electronic devices. We also evaluated the performance of different functionals including LDA, PBE, and opt B88-vd W in describing elastic moduli of TMDCs and found that LDA seems to be the most qualified method. Moreover, our calculations suggest that the Young moduli for bilayers are insensitive to stacking orders and the mechanical coupling between monolayers seems to be negligible. 展开更多
关键词 transition metal dichalcogenides bilayer structures elastic properties electronic structure
下载PDF
Electronic structure of transition metal dichalcogenides PdTe_2 and Cu_(0.05)PdTe_2 superconductors obtained by angle-resolved photoemission spectroscopy 被引量:1
15
作者 刘艳 赵建洲 +21 位作者 俞理 林成天 胡成 刘德发 彭莹莹 谢卓晋 何俊峰 陈朝宇 冯娅 伊合绵 刘旭 赵林 何少龙 刘国东 董晓莉 张君 陈创天 许祖彦 翁虹明 戴希 方忠 周兴江 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第6期100-108,共9页
The layered transition metal chalcogenides have been a fertile land in solid state physics for many decades. Various MX2-type transition metal dichalcogenides, such as WTe2, IrTe2, and MoS2, have triggered great atten... The layered transition metal chalcogenides have been a fertile land in solid state physics for many decades. Various MX2-type transition metal dichalcogenides, such as WTe2, IrTe2, and MoS2, have triggered great attention recently, either for the discovery of novel phenomena or some extreme or exotic physical properties, or for their potential applications. PdTe2 is a superconductor in the class of transition metal dichalcogenides, and superconductivity is enhanced in its Cu- intercalated form, Cuo.05PdTe2. It is important to study the electronic structures of PdTe2 and its intercalated form in order to explore for new phenomena and physical properties and understand the related superconductivity enhancement mecha- nism. Here we report systematic high resolution angle-resolved photoemission (ARPES) studies on PdTe2 and Cuo.05PdTe2 single crystals, combined with the band structure calculations. We present in detail for the first time the complex multi-band Fermi surface topology and densely-arranged band structure of these compounds. By carefully examining the electronic structures of the two systems, we find that Cu-intercalation in PdTe2 results in electron-doping, which causes the band structure to shift downwards by nearly 16 meV in Cuo.05PdTe2. Our results lay a foundation for further exploration and investigation on PdTe2 and related superconductors. 展开更多
关键词 transition metal dichalcogenides PdTe2 SUPERCONDUCTOR PHOTOEMISSION
下载PDF
Transition Metal Dichalcogenides(WS2 and MoS2)Saturable Absorbers for Mode-Locked Erbium-Doped Fiber Lasers 被引量:1
16
作者 N.A.A.Kadir E.I.Ismail +3 位作者 A.A.Latiff H.Ahmad H.Arof S.W.Harun 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第1期48-51,共4页
We demonstrate an ultrafast fiber laser based on transition metal dichalcogenide materials which are tungsten disulfide (WS<sub>2</sub>) and molybdenum disulfide (MoS<sub>2</sub>) as saturable ... We demonstrate an ultrafast fiber laser based on transition metal dichalcogenide materials which are tungsten disulfide (WS<sub>2</sub>) and molybdenum disulfide (MoS<sub>2</sub>) as saturable absorber (SA). These materials are fabricated via a simple drop-casting method. By employing WS<sub>2</sub>, we obtain a stable harmonic mode-locking at the threshold pump power of 184 mW, and the generated soliton pulse has 3.48 MHz of repetition rate. At the maximum pump power of 250 mW, we also obtain a small value of pulse duration, 2.43 ps with signal-to-noise ratio (SNR) of 57 dB. For MoS<sub>2</sub> SA, the pulse is generated at 105 mW pump power with repetition rate of 1.16 MHz. However, the pulse duration cannot be detected by the autocorrelator device as the pulse duration recorded is 468 ns, with the SNR value of 35 dB. 展开更多
关键词 WS2 and MoS2 SA transition metal dichalcogenides Saturable Absorbers for Mode-Locked Erbium-Doped Fiber Lasers
下载PDF
Effects of in-plane stiffness and charge transfer on thermal expansion of monolayer transition metal dichalcogenide 被引量:1
17
作者 王占雨 周艳丽 +4 位作者 王雪青 王飞 孙强 郭正晓 贾瑜 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第2期343-349,共7页
The temperature dependence of lattice constants is studied by using first-principles calculations to determine the effects of in-plane stiffness and charge transfer on the thermal expansions of monolayer semiconductin... The temperature dependence of lattice constants is studied by using first-principles calculations to determine the effects of in-plane stiffness and charge transfer on the thermal expansions of monolayer semiconducting transition metal dichalcogenides.Unlike the corresponding bulk material,our simulations show that monolayer MX2(M = Mo and W;X = S,Se,and Te) exhibits a negative thermal expansion at low temperatures,induced by the bending modes.The transition from contraction to expansion at higher temperatures is observed.Interestingly,the thermal expansion can be tailored regularly by alteration of the M or X atom.Detailed analysis shows that the positive thermal expansion coefficient is determined mainly by the in-plane stiffness,which can be expressed by a simple relationship.Essentially the regularity of this change can be attributed to the difference in charge transfer between the different elements.These findings should be applicable to other two-dimensional systems. 展开更多
关键词 transition metal dichalcogenide thermal expansion PHONON
下载PDF
Imaging the crystal orientation of 2D transition metal dichalcogenides using polarization-resolved second-harmonic generation 被引量:1
18
作者 George Miltos Maragkakis Sotiris Psilodimitrakopoulos +4 位作者 Leonidas Mouchliadis Ioannis Paradisanos Andreas Lemonis George Kioseoglou Emmanuel Stratakis 《Opto-Electronic Advances》 2019年第11期12-19,共8页
We use laser-scanning nonlinear imaging microscopy in atomically thin transition metal dichalcogenides(TMDs)to reveal information on the crystalline orientation distribution,within the 2D lattice.In particular,we perf... We use laser-scanning nonlinear imaging microscopy in atomically thin transition metal dichalcogenides(TMDs)to reveal information on the crystalline orientation distribution,within the 2D lattice.In particular,we perform polarization-resolved second-harmonic generation(PSHG)imaging in a stationary,raster-scanned chemical vapor deposition(CVD)-grown WS2 flake,in order to obtain with high precision a spatially resolved map of the orientation of its main crystallographic axis(armchair orientation).By fitting the experimental PSHG images of sub-micron resolution into a generalized nonlinear model,we are able to determine the armchair orientation for every pixel of the image of the 2D material,with further improved resolution.This pixel-wise mapping of the armchair orientation of 2D WS2 allows us to distinguish between different domains,reveal fine structure,and estimate the crystal orientation variability,which can be used as a unique crystal quality marker over large areas.The necessity and superiority of a polarization-resolved analysis over intensity-only measurements is experimentally demonstrated,while the advantages of PSHG over other techniques are analysed and discussed. 展开更多
关键词 nonlinear imaging of 2D materials crystal orientation mapping crystal quality marker polarization-resolved second-harmonic generation atomically thin transition metal dichalcogenides graphene-related materials
下载PDF
Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives 被引量:2
19
作者 Ahmed Elbanna Ksenia Chaykun +6 位作者 Yulia Lekina Yuanda Liu Benny Febriansyah Shuzhou Li Jisheng Pan Ze Xiang Shen Jinghua Teng 《Opto-Electronic Science》 2022年第8期1-40,共40页
Transition metal dichalcogenides(TMDs)and perovskites are among the most attractive and widely investigated semiconductors in the recent decade.They are promising materials for various applications,such as photodetect... Transition metal dichalcogenides(TMDs)and perovskites are among the most attractive and widely investigated semiconductors in the recent decade.They are promising materials for various applications,such as photodetection,solar energy harvesting,light emission,and many others.Combining these materials to form heterostructures can enrich the already fascinating properties and bring up new phenomena and opportunities.Work in this field is growing rapidly in both fundamental studies and device applications.Here,we review the recent findings in the perovskite-TMD heterostructures and give our perspectives on the future development of this promising field.The fundamental properties of the perovskites,TMDs,and their heterostructures are discussed first,followed by a summary of the synthesis methods of the perovskites and TMDs and the approaches to obtain high-quality interfaces.Particular attention is paid to the TMD-perovskite heterostructures that have been applied in solar cells and photodetectors with notable performance improvement.Finally through our analysis,we propose an outline on further fundamental studies and the promising applications of perovskite-TMD heterostructures. 展开更多
关键词 transition metal dichalcogenides perovskites HETEROSTRUCTURES PHOTODETECTORS solar cells 2D materials
下载PDF
Extensive study of optical contrast between bulk and nanoscale transition metal dichalcogenide semiconductors
20
作者 Ankush Parmar Jashangeet Kaur +1 位作者 Manish Dev Sharma Navdeep Goyal 《Journal of Semiconductors》 EI CAS CSCD 2021年第8期45-54,共10页
A remarkable refinement in the optical behavior of two-dimensional transition metal dichalcogenides(TMDs)has been brought to light when cleaved from their respective bulks.These atomically thin direct bandgap semicond... A remarkable refinement in the optical behavior of two-dimensional transition metal dichalcogenides(TMDs)has been brought to light when cleaved from their respective bulks.These atomically thin direct bandgap semiconductors are highly responsive to optical energy which proposes the route for futuristic photonic devices.In this manuscript,we have substantially focused on the optical study of MoS_(2)and WS_(2)nanosheets and comparative analysis with their bulk counterparts.The synthesis of nanosheets has been accomplished with liquid exfoliation followed by fabrication of thin films with drop-casting technique.X-ray diffraction and field emission scanning electron microscopy affirmed the morphology,whereas,UV-visible spectroscopy served as the primary tool for optical analysis.It was observed that several parameters,like optical conductivity,optical band-gap energy etc.have enhanced statistics in the case of exfoliated nanosheets as compared to their respective bulks.Some researchers have touched upon this analysis for MoS_(2),but it is completely novel for WS_(2).We expect our work to clearly distinguish between the optical behaviors of nanoscale and bulk TMDs so as to intensify and strengthen the research related to 2D-layered materials for optoelectronic and photovoltaic applications. 展开更多
关键词 transition metal dichalcogenides 2D layered materials optical properties liquid phase exfoliation thin films dropcasting
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部