Exciton physics in atomically thin transition-metal dichalcogenides(TMDCs)holds paramount importance for fundamental physics research and prospective applications.However,the experimental exploration of exciton physic...Exciton physics in atomically thin transition-metal dichalcogenides(TMDCs)holds paramount importance for fundamental physics research and prospective applications.However,the experimental exploration of exciton physics,including excitonic coherence dynamics,exciton many-body interactions,and their optical properties,faces challenges stemming from factors such as spatial heterogeneity and intricate many-body effects.In this perspective,we elaborate upon how optical two-dimensional coherent spectroscopy(2DCS)emerges as an effective tool to tackle the challenges,and outline potential directions for gaining deeper insights into exciton physics in forthcoming experiments with the advancements in 2DCS techniques and new materials.展开更多
A main challenge for the development of two-dimensional devices based on atomically thin transition-metal dichalcogenides(TMDs)is the realization of metal–semiconductor junctions(MSJs)with low contact resistance and ...A main challenge for the development of two-dimensional devices based on atomically thin transition-metal dichalcogenides(TMDs)is the realization of metal–semiconductor junctions(MSJs)with low contact resistance and high charge transport capability.However,traditional metal–TMD junctions usually suffer from strong Fermi-level pinning(FLP)and chemical disorder at the interfaces,resulting in weak device performance and high energy consump-tion.By means of high-throughput first-principles calculations,we report an attractive solution via the formation of van der Waals(vdW)contacts between metallic and semiconducting TMDs.We apply a phase-engineering strategy to create a monolayer TMD database for achieving a wide range of work func-tions and band gaps,hence offering a large degree of freedom to construct TMD vdW MSJs with desired contact types.The Schottky barrier heights and contact types of 728 MSJs have been identified and they exhibit weak FLP(-0.62 to-0.90)as compared with the traditional metal–TMD junctions.We find that the interfacial interactions of the MSJs bring a delicate competition between the FLP strength and carrier tunneling efficiency,which can be uti-lized to screen high-performance MSJs.Based on a set of screening criteria,four potential TMD vdW MSJs(e.g.,NiTe_(2)/ZrSe_(2),NiTe_(2)/PdSe_(2),HfTe_(2)/PdTe_(2),TaSe_(2)/MoTe_(2))with Ohmic contact,weak FLP,and high carrier tunneling probability have been predicted.This work not only provides a fundamental understanding of contact properties of TMD vdW MSJs but also renders their huge potential for electronics and optoelectronics.展开更多
Transition metal dichalcogenides(TMDs)are a class of materials with various useful properties,and it is worthwhile to have a thorough evaluation of the characteristics of the TMDs,most importantly,their structural sta...Transition metal dichalcogenides(TMDs)are a class of materials with various useful properties,and it is worthwhile to have a thorough evaluation of the characteristics of the TMDs,most importantly,their structural stability and exfoliability,in a systematic fashion.Here,by employing high-throughput first-principles calculations,we investigate the vast phase space of TMDs,including 16 bulk phases and 6 monolayer phases for all possible TMD combinations[comprising(3d,4d,5d)transition-metal cations and(S,Se,Te)anions],totaling 1386 compounds.Through the‘bird-view’of the as-large-as-possible configurational and chemical space of TMDs,our work presents comprehensive energy landscapes to elucidate the thermodynamic stability as well as the exfoliability of TMDs,which are of vital importance for future synthesis and exploration towards large-scale industrial applications.展开更多
Concentrated solid solution materials with huge compositional design space and normally unexpected property attract extensive interests of researchers.In these emerging materials,local composition fluctuation such as ...Concentrated solid solution materials with huge compositional design space and normally unexpected property attract extensive interests of researchers.In these emerging materials,local composition fluctuation such as short-range order(SRO),has been observed and found to have nontrivial effects on material properties,and thus can be utilized as an additional degree of freedom for material optimization.To exploit SRO,its interplay with factors beyond element-level property,including lattice symmetry and bonding environment,should be clarified.In this work by using layered transition-metal dichalcogenide Mo(X0.5X00.5)2(X/X0=O,S,Se,or Te)with mixed element in the non-metal sublattice as the platform,the ordering phenomena are systematically studied using multiscale simulations.As expected,electronegativity difference between X and X0 strongly regulates SRO.Additionally,SRO and long-range order(LRO)are observed in the 2H and T/T0 phase of MoXX0,respectively,indicating a strong influence of lattice symmetry on SRO.More importantly,as vdW interaction is introduced,the SRO structure in 2HMoXX0 bilayer can be re-configured,while the LRO in T/T0-MoXX0 remains unchanged.Electronic insights for SRO and the resultant property variation are obtained.This work presents a thorough understanding of SRO in bonding complex systems,benefiting the SRO-guided material designs.展开更多
We theoretically investigate the possibility of achieving a superconducting state in transition-metal dichalcogenide bilayers through intercalation, a process previously and widely used to achieve metal- lization and ...We theoretically investigate the possibility of achieving a superconducting state in transition-metal dichalcogenide bilayers through intercalation, a process previously and widely used to achieve metal- lization and superconducting states in novel superconductors. For the Ca-intercalated bilayers MoSs and WS2, we find that the superconducting state is characterized by an electron-phonon coupling constant larger than 1.0 and a superconducting critical temperature of 13.3 and 9.3 K, respectively. These results are superior to other predicted or experimentally observed two-dimensional conventional 'superconductors and suggest that the investigated materials may be good candidates for nanoscale su- perconductors. More interestingly, we proved that the obtained thermodynamic properties go beyond the predictions of the mean-field Bardeen-Cooper-Schrieffer approximation and that the calculations conducted within the framework of the strong-coupling Eliashberg theory should be treated as those that yield quantitative results.展开更多
The recent discovery of hidden spin polarization emerging in layered materials of specific nonmagnetic crystal is a fascinating phenomenon, though hardly explored yet. Here, we have studied hidden spin tex- tures in l...The recent discovery of hidden spin polarization emerging in layered materials of specific nonmagnetic crystal is a fascinating phenomenon, though hardly explored yet. Here, we have studied hidden spin tex- tures in layered nonmagnetic 1 T-phase transition-metal dichalcogenides MX2 (M = Zr, Hf; X = S, Se, Te) by using first-principles calculations. Spin-layer locking effect, namely, energy-degenerate opposite spins spatially separated in the top and bottom layer respectively, has been identified. In particular, the hidden spin polarization of 13-band can be easily probed, which is strongly affected by the strength of spin-orbit coupling. The hidden spin polarization of k-band locating at high symmetry M point (conduction band minimum) has a strong anisotropy. In the bilayer, the hidden spin polarization is preserved at the upmost Se layer, while being suppressed if the ZrSe2 layer is taken as the symmetry partner. Our results on hidden spin polarization in 1 T-phase dichalcogenides, verifiable by spin-resolved and angle-resolved photoemis- sion spectroscopy (ARPES), enrich our understanding of spin physics and provide important clues to search for specific spin polarization in two dimensional materials for spintronic and quantum informa- tion applications.展开更多
We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed ...We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed laser ablation of Co,Fe,Ti,and Mo metals in acetone.The interaction between carbon s-p-orbitals and metal d-orbitals causes a redistribution of valence structure through charge transfer,leading to the formation of surface defects as observed by X-ray photoelectron spectroscopy.These defects influence the evolved TMCs,making them effective for hydrogen and oxygen evolution reactions(HER and OER)in an alkaline medium.Co_(3)C with more oxygen affinity promoted CoO(OH)intermediates,and the electrochemical surface oxidation to Co_(3)O_(4)was captured via in situ/operando electrochemical Raman probes,increasing the number of active sites for OER activity.MoC with more d-vacancies exhibits strong hydrogen binding,promoting HER kinetics,whereas Fe_(3)C and TiC with more defect states to trap charge carriers may hinder both OER and HER activities.The results show that the assembled membrane-less electrolyzer with Co_(3)C∥Co_(3)C and MoC∥MoC electrodes requires~2.01 and 1.99 V,respectively,to deliver a 10 mA cm−2 with excellent electrochemical and structural stability.In addition,the ascertained pulsed laser synthesis mechanism and unit-cell packing relations will open up sustainable pathways for obtaining highly stable electrocatalysts for electrolyzers.展开更多
An emerging subclass of transition-metal dichalcogenides(TMDs),noble-transition-metal dichalcogenides(NMDs),has led to an increase in nanoscientific research in two-dimensional(2D)materials.NMDs feature a unique struc...An emerging subclass of transition-metal dichalcogenides(TMDs),noble-transition-metal dichalcogenides(NMDs),has led to an increase in nanoscientific research in two-dimensional(2D)materials.NMDs feature a unique structure and several useful properties.2D NMDs are promising candidates for a broad range of applications in areas such as photodetectors,phototransistors,saturable absorbers,and meta optics.In this review,the state of the art of 2D NMDs research,their structures,properties,synthesis,and potential applications are discussed,and a perspective of expected future developments is provided.展开更多
Recently,two-dimensional transition metal dichalcogenides(TMDs)demonstrated their great potential as cost-effective catalysts in hydrogen evolution reaction.Herein,we systematically summarize the existing defect engin...Recently,two-dimensional transition metal dichalcogenides(TMDs)demonstrated their great potential as cost-effective catalysts in hydrogen evolution reaction.Herein,we systematically summarize the existing defect engineering strategies,including intrinsic defects(atomic vacancy and active edges)and extrinsic defects(metal doping,nonmetal doping,and hybrid doping),which have been utilized to obtain advanced TMD-based electrocatalysts.Based on theoretical simulations and experimental results,the electronic structure,intermediate adsorption/desorption energies and possible catalytic mechanisms are thoroughly discussed.Particular emphasis is given to the intrinsic relationship between various types of defects and electrocatalytic properties.Furthermore,current opportunities and challenges for mechanical investigations and applications of defective TMD-based catalysts are presented.The aim herein is to reveal the respective properties of various defective TMD catalysts and provide valuable insights for fabricating high-efficiency TMD-based electrocatalysts.展开更多
Transition metal dichalcogenides(TMDs)show great advantages in electromagnetic wave(EMW)absorption due to their unique structure and electrical properties.Tremendous research works on TMD-based EMW absorbers have been...Transition metal dichalcogenides(TMDs)show great advantages in electromagnetic wave(EMW)absorption due to their unique structure and electrical properties.Tremendous research works on TMD-based EMW absorbers have been conducted in the last three years,and the comprehensive and systematical summary is still a rarity.Therefore,it is of great significance to elaborate on the interaction among the morphologies,structures,phases,components,and EMW absorption performances of TMD-based absorbers.This review is devoted to analyzing TMD-based absorbers from the following perspectives:the EMW absorption regulation strategies of TMDs and the latest progress of TMD-based hybrids as EMW absorbers.The absorption mechanisms and component-performance dependency of these achievements are also summarized.Finally,a straightforward insight into industrial revolution upgrading in this promising field is proposed.展开更多
Sustainable production of H2 through electrochemical water splitting is of great importance in the foreseeable future.Transition-metal metaphosphates(TMMPs)have a three-dimensional(3D)open-framework structure and a hi...Sustainable production of H2 through electrochemical water splitting is of great importance in the foreseeable future.Transition-metal metaphosphates(TMMPs)have a three-dimensional(3D)open-framework structure and a high content of P(which exists as PO3-),and therefore have been recognized as highly efficient catalysts for oxygen evolution reaction(OER)and the bottleneck of electrochemical water splitting.Furthermore,TMMPs can also contribute to hydrogen evolution reaction(HER)in alkaline and neutral media by facilitating water dissociation,and thus,overall water splitting can be achieved using this kind of material.In this timely review,we summarize the recent advances in the synthesis of TMMPs and their applications in OER and HER.We present a brief introduction of the structure and synthetic strategies of TMMPs in the first two parts.Then,we review the latest progress made in research on TMMPs as OER,HER,and overall water-splitting electrocatalysts.In this part,the intrinsic activity of TMMPs as well as the current strategy for improving the catalytic activity will be discussed systematically.Finally,we present the future opportunities and the remaining challenges for the application of TMMPs in the electrocatalysis field.展开更多
Field-effect transistors(FETs)present highly sensitive,rapid,and in situ detection capability in chemical and biological analysis.Recently,two-dimensional(2D)transition-metal dichalcogenides(TMDCs)attract significant ...Field-effect transistors(FETs)present highly sensitive,rapid,and in situ detection capability in chemical and biological analysis.Recently,two-dimensional(2D)transition-metal dichalcogenides(TMDCs)attract significant attention as FET channel due to their unique structures and outstanding properties.With the booming of studies on TMDC FETs,we aim to give a timely review on TMDCbased FET sensors for environmental analysis in different media.First,theoretical basics on TMDC and FET sensor are introduced.Then,recent advances of TMDC FET sensor for pollutant detection in gaseous and aqueous media are,respectively,discussed.At last,future perspectives and challenges in practical application and commercialization are given for TMDC FET sensors.This article provides an overview on TMDC sensors for a wide variety of analytes with an emphasize on the increasing demand of advanced sensing technologies in environmental analysis.展开更多
Monolayer group-VIB transition metal dichalcogenides(TMDs)feature low-energy massive Dirac fermions,which have valley contrasting Berry curvature.This nontrivial local band topology gives rise to valley Hall transport...Monolayer group-VIB transition metal dichalcogenides(TMDs)feature low-energy massive Dirac fermions,which have valley contrasting Berry curvature.This nontrivial local band topology gives rise to valley Hall transport and optical selection rules for interband transitions that open up new possibilities for valleytronics.However,the large bandgap in TMDs results in relatively small Berry curvature,leading to weak valley contrasting physics in practical experiments.Here,we show that Dirac fermions with tunable large Berry curvature can be engineered in moirésuperlattice of TMD heterobilayers.These moiréDirac fermions are created in a magnified honeycomb lattice with its sublattice degree of freedom formed by two local moirépotential minima.We show that applying an on-site potential can tune the moiréflat bands into helical ones.In short-period moirésuperlattice,we find that the two moirévalleys become asymmetric,which results in a net spin Hall current.More interestingly,a circularly polarized light drives these moiréDirac fermions into quantum anomalous Hall phase with chiral edge states.Our results open a new possibility to design the moiré-scale spin and valley physics using TMD moiréstructures.展开更多
Beyond graphene, the layered transition metal dichalcogenides (TMDs) have gained considerable attention due to their unique properties. Herein, we review the lattice dynamic and thermal properties of monolayer TMDs,...Beyond graphene, the layered transition metal dichalcogenides (TMDs) have gained considerable attention due to their unique properties. Herein, we review the lattice dynamic and thermal properties of monolayer TMDs, including their phonon dispersion, relaxation time, mean free path (MFP), and thermal conductivities. In particular, the experimental and theoretical studies reveal that the TMDs have relatively low thermal conductivities due to the short phonon group velocity and MFP, which poses a significant challenge for efficient thermal management of TMDs-based devices. Importantly, recent studies have shown that this issue could be largely addressed by connecting TMDs and other materials (such as metal electrode and graphene) with chemical bonds, and a relatively high interracial thermal conductance (ITC) could be achieved at the covalent bonded interface. The ITC of MoS2/Au interface with chemical edge contact is more than 10 times higher than that with physical side contact. In this article, we review recent advances in the study of TMD-related ITC. The effects of temperature, interfacial vacancy, contact orientation, and phonon modes on the edge-contacted interface are briefly discussed.展开更多
The investigation of thermal transport is crucial to the thermal management of modern electronic devices.To obtain the thermal conductivity through solution of the Boltzmann transport equation,calculation of the anhar...The investigation of thermal transport is crucial to the thermal management of modern electronic devices.To obtain the thermal conductivity through solution of the Boltzmann transport equation,calculation of the anharmonic interatomic force constants has a high computational cost based on the current method of single-point density functional theory force calculation.The recent suggested machine learning interatomic potentials(MLIPs)method can avoid these huge computational demands.In this work,we study the thermal conductivity of two-dimensional MoS_(2)-like hexagonal boron dichalcogenides(H-B_(2)VI_(2);V I=S,Se,Te)with a combination of MLIPs and the phonon Boltzmann transport equation.The room-temperature thermal conductivity of H-B_(2)S_(2)can reach up to 336 W·m^(-1)·K^(-1),obviously larger than that of H-B_(2)Se_(2)and H-B_(2)Te_(2).This is mainly due to the difference in phonon group velocity.By substituting the different chalcogen elements in the second sublayer,H-B_(2)VIV I′have lower thermal conductivity than H-B_(2)VI_(2).The room-temperature thermal conductivity of B2STe is only 11%of that of H-B_(2)S_(2).This can be explained by comparing phonon group velocity and phonon relaxation time.The MLIP method is proved to be an efficient method for studying the thermal conductivity of materials,and H-B_(2)S_(2)-based nanodevices have excellent thermal conduction.展开更多
3D architecratured transition metal dichalcogenides constructed by atomically thin layers are appealing building blocks in various applications,such as catalysts,energy storage,conversions,sensors,and so on.However,th...3D architecratured transition metal dichalcogenides constructed by atomically thin layers are appealing building blocks in various applications,such as catalysts,energy storage,conversions,sensors,and so on.However,the direct growth of 3D transition metal dichalcogenides architectures with high crystal quality and well-controlled size/thickness remains a huge challenge.Herein,we report a facile,highly-repeatable,and versatile chemical vapor deposition strategy,for the mass production of high-quality 3D-architecratured transition metal dichalcogenides(e.g.,MoS_(2),WS_(2),and ReS_(2))and their alloys(e.g.,W_(x)Mo(1–x)S_(2)and Rex Mo_((1–x))S_(2))nanosheets on naturally abundant and low-cost diatomite templates.Particularly,the purified transition metal dichalcogenides products exhibit unique and designable 3D biomorphic hierarchical microstructures,controllable layer thicknesses,tailorable chemical compositions,and good crystallinities.The weak interlayer interactions endow them with good dispersity in solutions to form stable additive-free inks for solution-processing-based applications,for example,high-permeable and high-stable separation membranes for water purification,and efficient electrocatalysts for hydrogen evolution reactions.This work paves ways for the low-cost,mass production of versatile transition metal dichalcogenides powder-like materials with designable structures and properties,toward energy/environmental-related applications and beyond.展开更多
The hydrogenic donor impurity states and intersubband optical absorption spectra in monolayer transition metal dichalcogenides(ML TMDs) under dielectric environments are theoretically investigated based on a two-dimen...The hydrogenic donor impurity states and intersubband optical absorption spectra in monolayer transition metal dichalcogenides(ML TMDs) under dielectric environments are theoretically investigated based on a two-dimensional(2D)nonorthogonal associated Laguerre basis set. The 2D quantum confinement effect together with the strongly reduced dielectric screening results in the strong attractive Coulomb potential between electron and donor ion, with exceptionally large impurity binding energy and huge intersubband oscillator strength. These lead to the strong interaction of the electron with light in a 2D regime. The intersubband optical absorption spectra exhibit strong absorption lines of the non-hydrogenic Rydberg series in the mid-infrared range of light. The strength of the Coulomb potential can be controlled by changing the dielectric environment. The electron affinity difference leads to charge transfer between ML TMD and the dielectric environment, generating the polarization-electric field in ML TMD accompanied by weakening the Coulomb interaction strength. The larger the dielectric constant of the dielectric environment, the more the charge transfer is, accompanied by the larger polarization-electric field and the stronger dielectric screening. The dielectric environment is shown to provide an efficient tool to tune the wavelength and output of the mid-infrared intersubband devices based on ML TMDs.展开更多
Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behav...Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field.展开更多
Transition metal dichalcogenides (TMDCs) have gained considerable attention because of their novel properties and great potential applications. The flakes of TMDCs not only have great light absorption from visible t...Transition metal dichalcogenides (TMDCs) have gained considerable attention because of their novel properties and great potential applications. The flakes of TMDCs not only have great light absorption from visible to near infrared, but also can be stacked together regardless of lattice mismatch like other two-dimensional (2D) materials. Along with the studies on intrinsic properties of TMDCs, the junctions based on TMDCs become more and more important in applications of photodetection. The junctions have shown many exciting possibilities to fully combine the advantages of TMDCs, other 2D materials, conventional and organic semiconductors together. Early studies have greatly enriched the application of TMDCs in photodetection. In this review, we investigate the efforts in photodetectors based on the junctions of TMDCs and analyze the properties of those photodetectors. Homojunctions based on TMDCs can be made by surface chemical doping, elemental doping and electrostatic gating. Heterojunction formed between TMDCs/2D materials, TMDCs/conventional semiconductors and TMDCs/organic semiconductor also deserve more attentions. We also compare the advantages and disadvantages of different junctions, and then give the prospects for the development of junctions based on TMDCs.展开更多
First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vd W-DF functional in the form of opt B88-vd W, have been performed to investigate the electronic and elastic prope...First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vd W-DF functional in the form of opt B88-vd W, have been performed to investigate the electronic and elastic properties of twodimensional transition metal dichalcogenides(TMDCs) with the formula of MX2(M = Mo, W; X = O, S, Se, Te) in both monolayer and bilayer structures. The calculated band structures show a direct band gap for monolayer TMDCs at the K point except for MoO2 and WO2. When the monolayers are stacked into a bilayer, the reduced indirect band gaps are found except for bilayer WTe2, in which the direct gap is still present at the K point. The calculated in-plane Young moduli are comparable to that of graphene, which promises possible application of TMDCs in future flexible and stretchable electronic devices. We also evaluated the performance of different functionals including LDA, PBE, and opt B88-vd W in describing elastic moduli of TMDCs and found that LDA seems to be the most qualified method. Moreover, our calculations suggest that the Young moduli for bilayers are insensitive to stacking orders and the mechanical coupling between monolayers seems to be negligible.展开更多
基金S.Y.and X.L.acknowledge the support from the National Natural Science Foundation of China(Grant Nos.12121004 and 12004391)the China Postdoctoral Science Foundation(Grants Nos.2020T130682 and 2019M662752)+6 种基金the Science and Technology Department of Hubei Province(Grant No.2020CFA029)the Knowledge Innovation Program of Wuhan-Shuguang Project.T.J.acknowledges the support from the National Natural Science Foundation of China(Grant Nos.62175188 and 62005198)the Shanghai Science and Technology Innovation Action Plan Project(Grant No.23ZR1465800)X.C.acknowledges support from the National Natural Science Foundation of China(Grant Nos.61925504,62020106009,and 6201101335)Science and Technology Commission of Shanghai Municipality(Grant Nos.17JC1400800,20JC1414600,and 21JC1406100)the Special Development Funds for Major Projects of Shanghai Zhangjiang National Independent Innovation Demonstration Zone(Grant No.ZJ2021-ZD-008)D.H.acknowledges the support from the Fundamental Research Funds for the Central Universities.
文摘Exciton physics in atomically thin transition-metal dichalcogenides(TMDCs)holds paramount importance for fundamental physics research and prospective applications.However,the experimental exploration of exciton physics,including excitonic coherence dynamics,exciton many-body interactions,and their optical properties,faces challenges stemming from factors such as spatial heterogeneity and intricate many-body effects.In this perspective,we elaborate upon how optical two-dimensional coherent spectroscopy(2DCS)emerges as an effective tool to tackle the challenges,and outline potential directions for gaining deeper insights into exciton physics in forthcoming experiments with the advancements in 2DCS techniques and new materials.
基金National Natural Science Foundation of China,Grant/Award Number:62174151Natural Science Foundation of Zhejiang Province,Grant/Award Numbers:LZ22F040003,Q21A050007。
文摘A main challenge for the development of two-dimensional devices based on atomically thin transition-metal dichalcogenides(TMDs)is the realization of metal–semiconductor junctions(MSJs)with low contact resistance and high charge transport capability.However,traditional metal–TMD junctions usually suffer from strong Fermi-level pinning(FLP)and chemical disorder at the interfaces,resulting in weak device performance and high energy consump-tion.By means of high-throughput first-principles calculations,we report an attractive solution via the formation of van der Waals(vdW)contacts between metallic and semiconducting TMDs.We apply a phase-engineering strategy to create a monolayer TMD database for achieving a wide range of work func-tions and band gaps,hence offering a large degree of freedom to construct TMD vdW MSJs with desired contact types.The Schottky barrier heights and contact types of 728 MSJs have been identified and they exhibit weak FLP(-0.62 to-0.90)as compared with the traditional metal–TMD junctions.We find that the interfacial interactions of the MSJs bring a delicate competition between the FLP strength and carrier tunneling efficiency,which can be uti-lized to screen high-performance MSJs.Based on a set of screening criteria,four potential TMD vdW MSJs(e.g.,NiTe_(2)/ZrSe_(2),NiTe_(2)/PdSe_(2),HfTe_(2)/PdTe_(2),TaSe_(2)/MoTe_(2))with Ohmic contact,weak FLP,and high carrier tunneling probability have been predicted.This work not only provides a fundamental understanding of contact properties of TMD vdW MSJs but also renders their huge potential for electronics and optoelectronics.
基金supported by National Key R&D Program of China(2021YFA0718700)The computational resource is provided by the Platform for Data-Driven Computational Materials Discovery of the Songshan Lake laboratorythe financial support from Chinese Academy of Sciences(Grant Nos.ZDBS-LYSLH007,XDB33020000,and CAS-WX2021PY-0102).
文摘Transition metal dichalcogenides(TMDs)are a class of materials with various useful properties,and it is worthwhile to have a thorough evaluation of the characteristics of the TMDs,most importantly,their structural stability and exfoliability,in a systematic fashion.Here,by employing high-throughput first-principles calculations,we investigate the vast phase space of TMDs,including 16 bulk phases and 6 monolayer phases for all possible TMD combinations[comprising(3d,4d,5d)transition-metal cations and(S,Se,Te)anions],totaling 1386 compounds.Through the‘bird-view’of the as-large-as-possible configurational and chemical space of TMDs,our work presents comprehensive energy landscapes to elucidate the thermodynamic stability as well as the exfoliability of TMDs,which are of vital importance for future synthesis and exploration towards large-scale industrial applications.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB3807200)the National Natural Science Foundation of China(No.52173216)the Fundamental Research Funds for the Central Universities.
文摘Concentrated solid solution materials with huge compositional design space and normally unexpected property attract extensive interests of researchers.In these emerging materials,local composition fluctuation such as short-range order(SRO),has been observed and found to have nontrivial effects on material properties,and thus can be utilized as an additional degree of freedom for material optimization.To exploit SRO,its interplay with factors beyond element-level property,including lattice symmetry and bonding environment,should be clarified.In this work by using layered transition-metal dichalcogenide Mo(X0.5X00.5)2(X/X0=O,S,Se,or Te)with mixed element in the non-metal sublattice as the platform,the ordering phenomena are systematically studied using multiscale simulations.As expected,electronegativity difference between X and X0 strongly regulates SRO.Additionally,SRO and long-range order(LRO)are observed in the 2H and T/T0 phase of MoXX0,respectively,indicating a strong influence of lattice symmetry on SRO.More importantly,as vdW interaction is introduced,the SRO structure in 2HMoXX0 bilayer can be re-configured,while the LRO in T/T0-MoXX0 remains unchanged.Electronic insights for SRO and the resultant property variation are obtained.This work presents a thorough understanding of SRO in bonding complex systems,benefiting the SRO-guided material designs.
文摘We theoretically investigate the possibility of achieving a superconducting state in transition-metal dichalcogenide bilayers through intercalation, a process previously and widely used to achieve metal- lization and superconducting states in novel superconductors. For the Ca-intercalated bilayers MoSs and WS2, we find that the superconducting state is characterized by an electron-phonon coupling constant larger than 1.0 and a superconducting critical temperature of 13.3 and 9.3 K, respectively. These results are superior to other predicted or experimentally observed two-dimensional conventional 'superconductors and suggest that the investigated materials may be good candidates for nanoscale su- perconductors. More interestingly, we proved that the obtained thermodynamic properties go beyond the predictions of the mean-field Bardeen-Cooper-Schrieffer approximation and that the calculations conducted within the framework of the strong-coupling Eliashberg theory should be treated as those that yield quantitative results.
基金financially supported by the National Basic Research Program of China (2015CB921001, 2013CBA01600, and 2016YFA0300902)the National Natural Science Foundation of China (61306114)+2 种基金‘‘Strategic Priority Research Program (B)" of Chinese Academy of Sciences (XDB07030100)the National Natural Science Foundation of China Academy of Engineering Physics (U1430117)the Science Challenge Project (TZ2016001)
文摘The recent discovery of hidden spin polarization emerging in layered materials of specific nonmagnetic crystal is a fascinating phenomenon, though hardly explored yet. Here, we have studied hidden spin tex- tures in layered nonmagnetic 1 T-phase transition-metal dichalcogenides MX2 (M = Zr, Hf; X = S, Se, Te) by using first-principles calculations. Spin-layer locking effect, namely, energy-degenerate opposite spins spatially separated in the top and bottom layer respectively, has been identified. In particular, the hidden spin polarization of 13-band can be easily probed, which is strongly affected by the strength of spin-orbit coupling. The hidden spin polarization of k-band locating at high symmetry M point (conduction band minimum) has a strong anisotropy. In the bilayer, the hidden spin polarization is preserved at the upmost Se layer, while being suppressed if the ZrSe2 layer is taken as the symmetry partner. Our results on hidden spin polarization in 1 T-phase dichalcogenides, verifiable by spin-resolved and angle-resolved photoemis- sion spectroscopy (ARPES), enrich our understanding of spin physics and provide important clues to search for specific spin polarization in two dimensional materials for spintronic and quantum informa- tion applications.
基金National Research Foundation of Korea,Grant/Award Numbers:2019H1D3A1A01071209,2021R1I1A1A01060380,2022R1A2C2010686,2022R1A4A3033528Korea Basic Science Institute,Grant/Award Numbers:2019R1A6C1010042,2021R1A6C103A427。
文摘We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed laser ablation of Co,Fe,Ti,and Mo metals in acetone.The interaction between carbon s-p-orbitals and metal d-orbitals causes a redistribution of valence structure through charge transfer,leading to the formation of surface defects as observed by X-ray photoelectron spectroscopy.These defects influence the evolved TMCs,making them effective for hydrogen and oxygen evolution reactions(HER and OER)in an alkaline medium.Co_(3)C with more oxygen affinity promoted CoO(OH)intermediates,and the electrochemical surface oxidation to Co_(3)O_(4)was captured via in situ/operando electrochemical Raman probes,increasing the number of active sites for OER activity.MoC with more d-vacancies exhibits strong hydrogen binding,promoting HER kinetics,whereas Fe_(3)C and TiC with more defect states to trap charge carriers may hinder both OER and HER activities.The results show that the assembled membrane-less electrolyzer with Co_(3)C∥Co_(3)C and MoC∥MoC electrodes requires~2.01 and 1.99 V,respectively,to deliver a 10 mA cm−2 with excellent electrochemical and structural stability.In addition,the ascertained pulsed laser synthesis mechanism and unit-cell packing relations will open up sustainable pathways for obtaining highly stable electrocatalysts for electrolyzers.
基金The authors are grateful for the financial support from the National Natural Science Foundation of China(Nos.61874141 and 11904239).
文摘An emerging subclass of transition-metal dichalcogenides(TMDs),noble-transition-metal dichalcogenides(NMDs),has led to an increase in nanoscientific research in two-dimensional(2D)materials.NMDs feature a unique structure and several useful properties.2D NMDs are promising candidates for a broad range of applications in areas such as photodetectors,phototransistors,saturable absorbers,and meta optics.In this review,the state of the art of 2D NMDs research,their structures,properties,synthesis,and potential applications are discussed,and a perspective of expected future developments is provided.
基金National Natural Science Foundation of China,Grant/Award Numbers:51874039,52103333University of Science and Technology Beijing,talent program,Grant/Award Number:06500167Major Science and Technology Project,Grant/Award Number:2017ZX07402001。
文摘Recently,two-dimensional transition metal dichalcogenides(TMDs)demonstrated their great potential as cost-effective catalysts in hydrogen evolution reaction.Herein,we systematically summarize the existing defect engineering strategies,including intrinsic defects(atomic vacancy and active edges)and extrinsic defects(metal doping,nonmetal doping,and hybrid doping),which have been utilized to obtain advanced TMD-based electrocatalysts.Based on theoretical simulations and experimental results,the electronic structure,intermediate adsorption/desorption energies and possible catalytic mechanisms are thoroughly discussed.Particular emphasis is given to the intrinsic relationship between various types of defects and electrocatalytic properties.Furthermore,current opportunities and challenges for mechanical investigations and applications of defective TMD-based catalysts are presented.The aim herein is to reveal the respective properties of various defective TMD catalysts and provide valuable insights for fabricating high-efficiency TMD-based electrocatalysts.
基金financially supported by the Doctoral Foundation of Henan University of Technology(No.2021BS030)Natural Science Foundation of Shandong Province(No.ZR2019YQ24)+1 种基金Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites)。
文摘Transition metal dichalcogenides(TMDs)show great advantages in electromagnetic wave(EMW)absorption due to their unique structure and electrical properties.Tremendous research works on TMD-based EMW absorbers have been conducted in the last three years,and the comprehensive and systematical summary is still a rarity.Therefore,it is of great significance to elaborate on the interaction among the morphologies,structures,phases,components,and EMW absorption performances of TMD-based absorbers.This review is devoted to analyzing TMD-based absorbers from the following perspectives:the EMW absorption regulation strategies of TMDs and the latest progress of TMD-based hybrids as EMW absorbers.The absorption mechanisms and component-performance dependency of these achievements are also summarized.Finally,a straightforward insight into industrial revolution upgrading in this promising field is proposed.
基金the Natural Science Foundation of China(Grant Nos.21871065,22209129,and 22071038)the Heilongjiang Touyan Team(HITTY-20190033)+3 种基金High-Level Innovation and Entrepreneurship(QCYRCXM-2022-123)the Talent Project of Qinchuangyuan and Interdisciplinary Research Foundation of HIT(IR2021205)Professor Li acknowledges the financial support from the“Young Talent Support Plan”of Xi'an Jiaotong University(HG6J024)the“Young Talent Lift Plan”of Xi'an city(095920221352).
文摘Sustainable production of H2 through electrochemical water splitting is of great importance in the foreseeable future.Transition-metal metaphosphates(TMMPs)have a three-dimensional(3D)open-framework structure and a high content of P(which exists as PO3-),and therefore have been recognized as highly efficient catalysts for oxygen evolution reaction(OER)and the bottleneck of electrochemical water splitting.Furthermore,TMMPs can also contribute to hydrogen evolution reaction(HER)in alkaline and neutral media by facilitating water dissociation,and thus,overall water splitting can be achieved using this kind of material.In this timely review,we summarize the recent advances in the synthesis of TMMPs and their applications in OER and HER.We present a brief introduction of the structure and synthetic strategies of TMMPs in the first two parts.Then,we review the latest progress made in research on TMMPs as OER,HER,and overall water-splitting electrocatalysts.In this part,the intrinsic activity of TMMPs as well as the current strategy for improving the catalytic activity will be discussed systematically.Finally,we present the future opportunities and the remaining challenges for the application of TMMPs in the electrocatalysis field.
基金the National Natural Science Foundation of China(No.21707102)the Fundamental Research Funds for the Central Universities,China(No.22120180524).
文摘Field-effect transistors(FETs)present highly sensitive,rapid,and in situ detection capability in chemical and biological analysis.Recently,two-dimensional(2D)transition-metal dichalcogenides(TMDCs)attract significant attention as FET channel due to their unique structures and outstanding properties.With the booming of studies on TMDC FETs,we aim to give a timely review on TMDCbased FET sensors for environmental analysis in different media.First,theoretical basics on TMDC and FET sensor are introduced.Then,recent advances of TMDC FET sensor for pollutant detection in gaseous and aqueous media are,respectively,discussed.At last,future perspectives and challenges in practical application and commercialization are given for TMDC FET sensors.This article provides an overview on TMDC sensors for a wide variety of analytes with an emphasize on the increasing demand of advanced sensing technologies in environmental analysis.
基金Project supported by the Science Fund for Distinguished Young Scholars of Hunan Province(Grant No.2022J10002)the National Key Research and Development Program of China(Grant No.2021YFA1200503)the Fundamental Research Funds for the Central Universities from China。
文摘Monolayer group-VIB transition metal dichalcogenides(TMDs)feature low-energy massive Dirac fermions,which have valley contrasting Berry curvature.This nontrivial local band topology gives rise to valley Hall transport and optical selection rules for interband transitions that open up new possibilities for valleytronics.However,the large bandgap in TMDs results in relatively small Berry curvature,leading to weak valley contrasting physics in practical experiments.Here,we show that Dirac fermions with tunable large Berry curvature can be engineered in moirésuperlattice of TMD heterobilayers.These moiréDirac fermions are created in a magnified honeycomb lattice with its sublattice degree of freedom formed by two local moirépotential minima.We show that applying an on-site potential can tune the moiréflat bands into helical ones.In short-period moirésuperlattice,we find that the two moirévalleys become asymmetric,which results in a net spin Hall current.More interestingly,a circularly polarized light drives these moiréDirac fermions into quantum anomalous Hall phase with chiral edge states.Our results open a new possibility to design the moiré-scale spin and valley physics using TMD moiréstructures.
基金financial support by the Agency for Science, Technology and Research (A*STAR), Singaporethe use of computing resources at the A*STAR Computational Resource Centre, Singaporesupported in part by the Science and Engineering Research Council (152-70-00017)
文摘Beyond graphene, the layered transition metal dichalcogenides (TMDs) have gained considerable attention due to their unique properties. Herein, we review the lattice dynamic and thermal properties of monolayer TMDs, including their phonon dispersion, relaxation time, mean free path (MFP), and thermal conductivities. In particular, the experimental and theoretical studies reveal that the TMDs have relatively low thermal conductivities due to the short phonon group velocity and MFP, which poses a significant challenge for efficient thermal management of TMDs-based devices. Importantly, recent studies have shown that this issue could be largely addressed by connecting TMDs and other materials (such as metal electrode and graphene) with chemical bonds, and a relatively high interracial thermal conductance (ITC) could be achieved at the covalent bonded interface. The ITC of MoS2/Au interface with chemical edge contact is more than 10 times higher than that with physical side contact. In this article, we review recent advances in the study of TMD-related ITC. The effects of temperature, interfacial vacancy, contact orientation, and phonon modes on the edge-contacted interface are briefly discussed.
基金Scientific and Technological Research of Chongqing Municipal Education Commission(Grant No.KJZD-K202100602)the funding of Institute for Advanced Sciences of Chongqing University of Posts and Telecommunications(Grant No.E011A2022326)。
文摘The investigation of thermal transport is crucial to the thermal management of modern electronic devices.To obtain the thermal conductivity through solution of the Boltzmann transport equation,calculation of the anharmonic interatomic force constants has a high computational cost based on the current method of single-point density functional theory force calculation.The recent suggested machine learning interatomic potentials(MLIPs)method can avoid these huge computational demands.In this work,we study the thermal conductivity of two-dimensional MoS_(2)-like hexagonal boron dichalcogenides(H-B_(2)VI_(2);V I=S,Se,Te)with a combination of MLIPs and the phonon Boltzmann transport equation.The room-temperature thermal conductivity of H-B_(2)S_(2)can reach up to 336 W·m^(-1)·K^(-1),obviously larger than that of H-B_(2)Se_(2)and H-B_(2)Te_(2).This is mainly due to the difference in phonon group velocity.By substituting the different chalcogen elements in the second sublayer,H-B_(2)VIV I′have lower thermal conductivity than H-B_(2)VI_(2).The room-temperature thermal conductivity of B2STe is only 11%of that of H-B_(2)S_(2).This can be explained by comparing phonon group velocity and phonon relaxation time.The MLIP method is proved to be an efficient method for studying the thermal conductivity of materials,and H-B_(2)S_(2)-based nanodevices have excellent thermal conduction.
基金supported by the National Natural Science Foundation of China(Nos.52021006,51925201,51991344,51991340)the National Key Research and Development Program of China(No.2018YFA0703700)+1 种基金the Beijing Natural Science Foundation(No.2192021)the China Postdoctoral Science Foundation(No.2021M690195).
文摘3D architecratured transition metal dichalcogenides constructed by atomically thin layers are appealing building blocks in various applications,such as catalysts,energy storage,conversions,sensors,and so on.However,the direct growth of 3D transition metal dichalcogenides architectures with high crystal quality and well-controlled size/thickness remains a huge challenge.Herein,we report a facile,highly-repeatable,and versatile chemical vapor deposition strategy,for the mass production of high-quality 3D-architecratured transition metal dichalcogenides(e.g.,MoS_(2),WS_(2),and ReS_(2))and their alloys(e.g.,W_(x)Mo(1–x)S_(2)and Rex Mo_((1–x))S_(2))nanosheets on naturally abundant and low-cost diatomite templates.Particularly,the purified transition metal dichalcogenides products exhibit unique and designable 3D biomorphic hierarchical microstructures,controllable layer thicknesses,tailorable chemical compositions,and good crystallinities.The weak interlayer interactions endow them with good dispersity in solutions to form stable additive-free inks for solution-processing-based applications,for example,high-permeable and high-stable separation membranes for water purification,and efficient electrocatalysts for hydrogen evolution reactions.This work paves ways for the low-cost,mass production of versatile transition metal dichalcogenides powder-like materials with designable structures and properties,toward energy/environmental-related applications and beyond.
文摘The hydrogenic donor impurity states and intersubband optical absorption spectra in monolayer transition metal dichalcogenides(ML TMDs) under dielectric environments are theoretically investigated based on a two-dimensional(2D)nonorthogonal associated Laguerre basis set. The 2D quantum confinement effect together with the strongly reduced dielectric screening results in the strong attractive Coulomb potential between electron and donor ion, with exceptionally large impurity binding energy and huge intersubband oscillator strength. These lead to the strong interaction of the electron with light in a 2D regime. The intersubband optical absorption spectra exhibit strong absorption lines of the non-hydrogenic Rydberg series in the mid-infrared range of light. The strength of the Coulomb potential can be controlled by changing the dielectric environment. The electron affinity difference leads to charge transfer between ML TMD and the dielectric environment, generating the polarization-electric field in ML TMD accompanied by weakening the Coulomb interaction strength. The larger the dielectric constant of the dielectric environment, the more the charge transfer is, accompanied by the larger polarization-electric field and the stronger dielectric screening. The dielectric environment is shown to provide an efficient tool to tune the wavelength and output of the mid-infrared intersubband devices based on ML TMDs.
基金This work was supported by National Key R&D Program of China(2021YFF1200200)Peiyang Talents Project of Tianjin University.
文摘Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB643903)the National Natural Science Foundation of China(Grant Nos.61225021,11474272,11174272,and 11404324)K.C.Wong Education Foundation
文摘Transition metal dichalcogenides (TMDCs) have gained considerable attention because of their novel properties and great potential applications. The flakes of TMDCs not only have great light absorption from visible to near infrared, but also can be stacked together regardless of lattice mismatch like other two-dimensional (2D) materials. Along with the studies on intrinsic properties of TMDCs, the junctions based on TMDCs become more and more important in applications of photodetection. The junctions have shown many exciting possibilities to fully combine the advantages of TMDCs, other 2D materials, conventional and organic semiconductors together. Early studies have greatly enriched the application of TMDCs in photodetection. In this review, we investigate the efforts in photodetectors based on the junctions of TMDCs and analyze the properties of those photodetectors. Homojunctions based on TMDCs can be made by surface chemical doping, elemental doping and electrostatic gating. Heterojunction formed between TMDCs/2D materials, TMDCs/conventional semiconductors and TMDCs/organic semiconductor also deserve more attentions. We also compare the advantages and disadvantages of different junctions, and then give the prospects for the development of junctions based on TMDCs.
基金Project supported by the Construct Program of the Key Discipline in Hunan Province,ChinaAid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China
文摘First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vd W-DF functional in the form of opt B88-vd W, have been performed to investigate the electronic and elastic properties of twodimensional transition metal dichalcogenides(TMDCs) with the formula of MX2(M = Mo, W; X = O, S, Se, Te) in both monolayer and bilayer structures. The calculated band structures show a direct band gap for monolayer TMDCs at the K point except for MoO2 and WO2. When the monolayers are stacked into a bilayer, the reduced indirect band gaps are found except for bilayer WTe2, in which the direct gap is still present at the K point. The calculated in-plane Young moduli are comparable to that of graphene, which promises possible application of TMDCs in future flexible and stretchable electronic devices. We also evaluated the performance of different functionals including LDA, PBE, and opt B88-vd W in describing elastic moduli of TMDCs and found that LDA seems to be the most qualified method. Moreover, our calculations suggest that the Young moduli for bilayers are insensitive to stacking orders and the mechanical coupling between monolayers seems to be negligible.