Objective At present, there is controversy regarding the existence of marine-terrestrial transitional facies that can act as a source of shale gas. This detailed study of Carboniferous-Permian age geological data from...Objective At present, there is controversy regarding the existence of marine-terrestrial transitional facies that can act as a source of shale gas. This detailed study of Carboniferous-Permian age geological data from the northern Shaanxi area (China) provides new insight for this type of shale gas. In addition, a new deposition and accumulation pattern for this type of shale gas is established.展开更多
Based on core description,thin section identification,X-ray diffraction analysis,scanning electron microscopy,low-temperature gas adsorption and high-pressure mercury intrusion porosimetry,the shale lithofacies of Sha...Based on core description,thin section identification,X-ray diffraction analysis,scanning electron microscopy,low-temperature gas adsorption and high-pressure mercury intrusion porosimetry,the shale lithofacies of Shan23 sub-member of Permian Shanxi Formation in the east margin of Ordos Basin was systematically analyzed in this study.The Shan23 sub-member has six lithofacies,namely,low TOC clay shale(C-L),low TOC siliceous shale(S-L),medium TOC siliceous shale(S-M),medium TOC hybrid shale(M-M),high TOC siliceous shale(S-H),and high TOC clay shale(C-H).Among them,S-H is the best lithofacies,S-M and M-M are the second best.The C-L and C-H lithofacies,mainly found in the upper part of Shan23 sub-member,generally developed in tide-dominated delta facies;the S-L,S-M,S-H and M-M shales occurring in the lower part of Shan23 sub-member developed in tide-dominated estuarine bay facies.The S-H,S-M and M-M shales have good pore struc-ture and largely organic matter pores and mineral interparticle pores,including interlayer pore in clay minerals,pyrite inter-crystalline pore,and mineral dissolution pore.C-L and S-L shales have mainly mineral interparticle pores and clay mineral in-terlayer pores,and a small amount of organic matter pores,showing poorer pore structure.The C-H shale has organic mi-cro-pores and a small number of interlayer fissures of clay minerals,showing good micro-pore structure,and poor meso-pore and macro-pore structure.The formation of favorable lithofacies is jointly controlled by depositional environment and diagen-esis.Shallow bay-lagoon depositional environment is conducive to the formation of type II2 kerogen which can produce a large number of organic cellular pores.Besides,the rich biogenic silica is conducive to the preservation of primary pores and en-hances the fracability of the shale reservoir.展开更多
Organic matter(OM)nanopores developed in transitional facies shales,i.e.,the Upper Permian Longtan and Dalong Formations in the Yangtze Platform,China,were investigated to determine the corre-sponding influence of the...Organic matter(OM)nanopores developed in transitional facies shales,i.e.,the Upper Permian Longtan and Dalong Formations in the Yangtze Platform,China,were investigated to determine the corre-sponding influence of thermal maturity and OM types within the geological conditions.A suite of 16 core samples were taken from Type-Ⅲ Longtan shales and Type-Ⅱ Dalong shales from two wells covering a ma-turity(Ro,vitrinite reflectance)ranging from 1.22%to 1.43%and 2.62%to 2.97%,respectively.Integrated analysis of the shale samples was carried out,including field-emission scanning electron microscopy(FESEM),low-pressure N2 and CO2 adsorption,high-pressure CH4 adsorption,and mercury intrusion capillary pressure(MICP)analysis.The fluid inclusions of liquid and gas hydrocarbons trapped in calcite vein samples in Dalong shales of two wells were studied using laser Raman and fluorescence spectroscopy.FE-SEM images indicated that OM pores in different formations varied substantially in terms of shape,size,and distribution density.OM pores in Type-Ⅱ Dalong shales of Well XY1 were mainly micropore,sparsely distributed in the gas-prone kerogen with a spot-like and irregular shape,while bitumen rarely developed observable pores.In contrast,the morphology of OM pores in Type-Ⅲ Longtan shales were significantly different,which was due to differences in the OM type.The primary OM pores in some terrestrial woody debris in Longtan shales had a relatively larger pore diameter,ranging from hundreds of nanometers to a few micrometers and were al-most all rounded in shape,which might be one of the factors contributing to larger pore volume and gas adsorption capacity than Dalong shales of Well XY1.Comparing Dalong shales of Well XY1 with relatively lower thermal maturity,there were abundant spongy-like pores,densely developed in the pyrobitumen in Type-Ⅱ Dalong shales of Well EY1,with an irregular shape and diameter ranging from several to hundreds of nanometers.Many blue fluorescent oil inclusions and a small number of CH4 inclusions mixed with C2H6 could be observed within calcite veins in Dalong shales of Well XY1,whereas only CH4 inclusions could be identified within calcite veins in Dalong shales of Well EJ1.Therefore,thermal maturity not only controlled the type of hydrocarbons generated,but also makes a significant contribution to the formation of OM pores,resulting in larger pore volumes and adsorption capacity of Type-Ⅱ shale samples in the dry gas window.展开更多
基金funded by the Geological Survey Project of China Geological Survey(No.1212011085516)Geological Survey Level 2 Project(No.121201103000150011)Basic Research Professional Expenses of CAGS(No. YYWF201609)
文摘Objective At present, there is controversy regarding the existence of marine-terrestrial transitional facies that can act as a source of shale gas. This detailed study of Carboniferous-Permian age geological data from the northern Shaanxi area (China) provides new insight for this type of shale gas. In addition, a new deposition and accumulation pattern for this type of shale gas is established.
基金China National Science and Technology Major Project(2017ZX05035).
文摘Based on core description,thin section identification,X-ray diffraction analysis,scanning electron microscopy,low-temperature gas adsorption and high-pressure mercury intrusion porosimetry,the shale lithofacies of Shan23 sub-member of Permian Shanxi Formation in the east margin of Ordos Basin was systematically analyzed in this study.The Shan23 sub-member has six lithofacies,namely,low TOC clay shale(C-L),low TOC siliceous shale(S-L),medium TOC siliceous shale(S-M),medium TOC hybrid shale(M-M),high TOC siliceous shale(S-H),and high TOC clay shale(C-H).Among them,S-H is the best lithofacies,S-M and M-M are the second best.The C-L and C-H lithofacies,mainly found in the upper part of Shan23 sub-member,generally developed in tide-dominated delta facies;the S-L,S-M,S-H and M-M shales occurring in the lower part of Shan23 sub-member developed in tide-dominated estuarine bay facies.The S-H,S-M and M-M shales have good pore struc-ture and largely organic matter pores and mineral interparticle pores,including interlayer pore in clay minerals,pyrite inter-crystalline pore,and mineral dissolution pore.C-L and S-L shales have mainly mineral interparticle pores and clay mineral in-terlayer pores,and a small amount of organic matter pores,showing poorer pore structure.The C-H shale has organic mi-cro-pores and a small number of interlayer fissures of clay minerals,showing good micro-pore structure,and poor meso-pore and macro-pore structure.The formation of favorable lithofacies is jointly controlled by depositional environment and diagen-esis.Shallow bay-lagoon depositional environment is conducive to the formation of type II2 kerogen which can produce a large number of organic cellular pores.Besides,the rich biogenic silica is conducive to the preservation of primary pores and en-hances the fracability of the shale reservoir.
基金We would like to thank the National Key R&D program of China(No.2017YFE0103600)the National Natural Science Foundation of China(Nos.41830431,41672139)the China National Science and Technology Major Projects(No.2016ZX05034002-003)for financial assistance to this research.
文摘Organic matter(OM)nanopores developed in transitional facies shales,i.e.,the Upper Permian Longtan and Dalong Formations in the Yangtze Platform,China,were investigated to determine the corre-sponding influence of thermal maturity and OM types within the geological conditions.A suite of 16 core samples were taken from Type-Ⅲ Longtan shales and Type-Ⅱ Dalong shales from two wells covering a ma-turity(Ro,vitrinite reflectance)ranging from 1.22%to 1.43%and 2.62%to 2.97%,respectively.Integrated analysis of the shale samples was carried out,including field-emission scanning electron microscopy(FESEM),low-pressure N2 and CO2 adsorption,high-pressure CH4 adsorption,and mercury intrusion capillary pressure(MICP)analysis.The fluid inclusions of liquid and gas hydrocarbons trapped in calcite vein samples in Dalong shales of two wells were studied using laser Raman and fluorescence spectroscopy.FE-SEM images indicated that OM pores in different formations varied substantially in terms of shape,size,and distribution density.OM pores in Type-Ⅱ Dalong shales of Well XY1 were mainly micropore,sparsely distributed in the gas-prone kerogen with a spot-like and irregular shape,while bitumen rarely developed observable pores.In contrast,the morphology of OM pores in Type-Ⅲ Longtan shales were significantly different,which was due to differences in the OM type.The primary OM pores in some terrestrial woody debris in Longtan shales had a relatively larger pore diameter,ranging from hundreds of nanometers to a few micrometers and were al-most all rounded in shape,which might be one of the factors contributing to larger pore volume and gas adsorption capacity than Dalong shales of Well XY1.Comparing Dalong shales of Well XY1 with relatively lower thermal maturity,there were abundant spongy-like pores,densely developed in the pyrobitumen in Type-Ⅱ Dalong shales of Well EY1,with an irregular shape and diameter ranging from several to hundreds of nanometers.Many blue fluorescent oil inclusions and a small number of CH4 inclusions mixed with C2H6 could be observed within calcite veins in Dalong shales of Well XY1,whereas only CH4 inclusions could be identified within calcite veins in Dalong shales of Well EJ1.Therefore,thermal maturity not only controlled the type of hydrocarbons generated,but also makes a significant contribution to the formation of OM pores,resulting in larger pore volumes and adsorption capacity of Type-Ⅱ shale samples in the dry gas window.