In this paper, we obtain some characterizations of the translational hull of strongly inverse wrpp semigroups. And we prove that the translational hull of a strongly inverse wrpp semigroup is still of the same type.
Congruence is a very important aspect in the study of the semigroup theory.In general,the Kernel-trace characterizations,Green's relations and subvarieties are main tools in the consideration of congruences on com...Congruence is a very important aspect in the study of the semigroup theory.In general,the Kernel-trace characterizations,Green's relations and subvarieties are main tools in the consideration of congruences on completely regular semigroups.In this paper,we give one class of congruences on completely regular semigroups with the representation of wreath product of translational hulls on completely simple semigroups.By this new way,the least Clifford semigroup congruences on completely regular semigroups are generalized.展开更多
We introduce the concepts of unitary, almost unitary and strongly almost unitary subset of an ordered semigroup. For the notions of almost unitary and strongly almost unitary subset of an ordered semigroup, we use the...We introduce the concepts of unitary, almost unitary and strongly almost unitary subset of an ordered semigroup. For the notions of almost unitary and strongly almost unitary subset of an ordered semigroup, we use the notion of translational hull of an ordered semigroup. If (S,⋅,≤) is an ordered semigroup having an element e such that e ≤ e<sup>2</sup> and U is a nonempty subset of S such that u ≤ eu, u ≤ ue for all u ∈ U, we show that U is almost unitary in S if and only if U is unitary in . Also if (S,⋅,≤) is an ordered semigroup, e ∉ S, U is a nonempty subset of S, S<sup>e</sup>:= S ∪ {e} and U<sup>e</sup>:= U ∪ {e}, we give conditions that an (“extension” of S) ordered semigroup and the subset U<sup>e</sup> of S<sup>e</sup> must satisfy in order for U to be almost unitary or strongly almost unitary in S (in case U is strongly almost unitary in S, then the given conditions are equivalent).展开更多
基金Supported by the National Natural Science Foundation of China(11361027)Supported by the Science Foundation of Education Department of Jiangxi Province(GJJ11388)Supported by the Youth Growth Fund of Jiangxi Normal University
文摘In this paper, we obtain some characterizations of the translational hull of strongly inverse wrpp semigroups. And we prove that the translational hull of a strongly inverse wrpp semigroup is still of the same type.
基金National Natural Science Foundation of China(No.11671056)General Science Foundation of Shanghai Normal University,China(No.KF201840)。
文摘Congruence is a very important aspect in the study of the semigroup theory.In general,the Kernel-trace characterizations,Green's relations and subvarieties are main tools in the consideration of congruences on completely regular semigroups.In this paper,we give one class of congruences on completely regular semigroups with the representation of wreath product of translational hulls on completely simple semigroups.By this new way,the least Clifford semigroup congruences on completely regular semigroups are generalized.
文摘We introduce the concepts of unitary, almost unitary and strongly almost unitary subset of an ordered semigroup. For the notions of almost unitary and strongly almost unitary subset of an ordered semigroup, we use the notion of translational hull of an ordered semigroup. If (S,⋅,≤) is an ordered semigroup having an element e such that e ≤ e<sup>2</sup> and U is a nonempty subset of S such that u ≤ eu, u ≤ ue for all u ∈ U, we show that U is almost unitary in S if and only if U is unitary in . Also if (S,⋅,≤) is an ordered semigroup, e ∉ S, U is a nonempty subset of S, S<sup>e</sup>:= S ∪ {e} and U<sup>e</sup>:= U ∪ {e}, we give conditions that an (“extension” of S) ordered semigroup and the subset U<sup>e</sup> of S<sup>e</sup> must satisfy in order for U to be almost unitary or strongly almost unitary in S (in case U is strongly almost unitary in S, then the given conditions are equivalent).