The present paper reports the results obtained for translational and rotational velocity profiles of spherical particles for the mixed flow in a conical silo.The discrete element method(DEM)based on Hertz-Mindlin(no s...The present paper reports the results obtained for translational and rotational velocity profiles of spherical particles for the mixed flow in a conical silo.The discrete element method(DEM)based on Hertz-Mindlin(no slip)with RVD rolling friction contact model is used for simulations.Opposite correlations are found between translational and rotational velocities in different flow areas of the silo.In particular,the abrasion caused by rotation is dominant in the funnel flow area.In addition,increase of the mass flow rate of silo can effectively reduce the abrasion induced by rotation.This highlights that understanding of dynamic characteristics of particles is helpful for optimization of silos and reduction of granular material abrasion.展开更多
基金supported by the National Natural Science Foundation of China (grant Nos.12002213,11972212,and 12072200)Shanghai Municipal Natural Science Foundation (grant No.20ZR1438800)Science and Technology Commission of Shanghai Municipality (grant No.19142201500).
文摘The present paper reports the results obtained for translational and rotational velocity profiles of spherical particles for the mixed flow in a conical silo.The discrete element method(DEM)based on Hertz-Mindlin(no slip)with RVD rolling friction contact model is used for simulations.Opposite correlations are found between translational and rotational velocities in different flow areas of the silo.In particular,the abrasion caused by rotation is dominant in the funnel flow area.In addition,increase of the mass flow rate of silo can effectively reduce the abrasion induced by rotation.This highlights that understanding of dynamic characteristics of particles is helpful for optimization of silos and reduction of granular material abrasion.